Antworten:
Erläuterung:
Wir haben:
Die Funktion ist in allen definiert
Wir können die kritischen Punkte identifizieren, indem wir herausfinden, wo die erste Ableitung gleich Null ist:
Die kritischen Punkte sind also:
Da der Nenner immer positiv ist, ist das Vorzeichen von
Nun wissen wir, dass ein Polynom zweiter Ordnung mit positivem Leitkoeffizienten außerhalb des Intervalls zwischen den Wurzeln und negativ im Intervall zwischen den Wurzeln positiv ist, so dass:
#f '(x) <0 # zum#x in (-oo, 1) # und#x in (3, + oo) #
#f '(x)> 0 # zum#x in (1,3) #
Wir haben dann das
Graph {2ln (x ^ 2 + 3) -x -1.42, 8.58, -0.08, 4.92}
Was sind die globalen und lokalen Extrema von f (x) = 2x ^ 7-2x ^ 5?
Wir schreiben f als f (x) = 2x ^ 7 * (1-1 / x ^ 2) um, aber lim_ (x-> oo) f (x) = oo, daher gibt es keine globalen Extrema. Für das lokale Extrema finden wir die Punkte, an denen (df) / dx = 0f '(x) = 0 => 14x ^ 6-10x ^ 4 = 0 => 2 * x ^ 4 * (7 * x ^ 2-5) ) = 0 => x_1 = sqrt (5/7) und x_2 = -sqrt (5/7) Daher haben wir das lokale Maximum bei x = -sqrt (5/7) f (-sqrt (5/7)) = 100/343 * sqrt (5/7) und lokales Minimum bei x = sqrt (5/7) ist f (sqrt (5/7)) = - 100/343 * sqrt (5/7)
Was sind die globalen und lokalen Extrema von f (x) = 8x ^ 3-4x ^ 2 + 6?
Die lokalen Extrema sind (0,6) und (1 / 3,158 / 27) und die globalen Extrema sind + -oo. Wir verwenden (x ^ n) '= nx ^ (n-1). Lassen Sie uns die erste Ableitung f' finden ( x) = 24x ^ 2-8x Für lokale Extremwerte f '(x) = 0 Also 24x ^ 2-8x = 8x (3x-1) = 0 x = 0 und x = 1/3 Wir wollen also ein Zeichendiagramm xcolor erstellen (weiß) (aaaaa) -Oocolor (weiß) (aaaaa) 0Farbe (weiß) (aaaaa) 1/3 Farbe (weiß) (aaaaa) + oo f '(x) Farbe (weiß) (aaaaa) + Farbe (weiß) ( aaaaa) -Farbe (weiß) (aaaaa) + f (x) Farbe (weiß) (aaaaaa) uarrcolor (weiß) (aaaaa) darrcolor (wei
Welches sind die lokalen Extrema von f (x) = a (x-2) (x-3) (x-b), wenn a und b ganze Zahlen sind?
F (x) = a (x-2) (x-3) (xb) Die lokalen Extremwerte gehorchen (df) / dx = a (6 + 5 b - 2 (5 + b) x + 3 x ^ 2) = 0 Wenn nun ne 0 ist, haben wir x = 1/3 (5 + b pm sqrt [7 - 5 b + b ^ 2]), aber 7 - 5 b + b ^ 2 gt 0 (hat komplexe Wurzeln), so dass f ( x) hat immer ein lokales Minimum und ein lokales Maximum. Angenommen eine ne 0