Hallo !
Lassen
Wählen Sie eine Spalte aus: die Spaltennummer
Das Kofaktor-Erweiterungsformel (oder Laplace-Formel) für die
woher
Beachten Sie, dass die Nummer
Es sieht vielleicht kompliziert aus, ist aber anhand eines Beispiels leicht zu verstehen. Wir wollen rechnen
Wenn wir uns in der 2. Spalte entwickeln, dann bekommen Sie
so:
Endlich,
Um effizient zu sein, müssen Sie eine Zeile auswählen, die viele Nullen enthält: Die Summe ist sehr einfach zu berechnen!
Anmerkung. weil
woher
Die Funktion für die Materialkosten für ein Hemd ist f (x) = 5 / 6x + 5, wobei x die Anzahl der Hemden ist. Die Funktion für den Verkaufspreis dieser Hemden ist g (f (x)), wobei g (x) = 5x + 6 ist. Wie finden Sie den Verkaufspreis von 18 Hemden?
Die Antwort ist g (f (18)) = 106 Wenn f (x) = 5 / 6x + 5 und g (x) = 5x + 6 Dann g (f (x)) = g (5 / 6x + 5) = 5 (5 / 6x + 5) +6 Vereinfachung von g (f (x)) = 25 / 6x + 25 + 6 = 25 / 6x + 31 Wenn x = 18 Dann ist g (f (18)) = 25/6 * 18 + 31 = 25 * 3 + 31 = 75 + 31 = 106
Die Summe zweier aufeinanderfolgender Zahlen ist 77. Die Differenz zwischen der Hälfte der kleineren und einem Drittel der größeren Zahl ist 6. Wenn x die kleinere Zahl ist und y die größere Zahl ist, stellen die beiden Gleichungen die Summe und die Differenz dar die Zahlen?
X + y = 77 1 / 2x-1 / 3y = 6 Wenn Sie die Zahlen wissen wollen, lesen Sie weiter: x = 38 y = 39
Sei [(x_ (11), x_ (12)), (x_21, x_22)] als ein Objekt definiert, das als Matrix bezeichnet wird. Die Determinante einer Matrix ist definiert als [(x_ (11) xxx_ (22)) - (x_21, x_12)]. Wenn nun M [(- 1,2), (-3, -5)] und N = [(- 6,4), (2, -4)] ist, was ist die Determinante von M + N & MxxN?
Determinante von ist M + N = 69 und die von MXN = 200ko Man muss auch die Summe und das Produkt der Matrizen definieren. Es wird jedoch davon ausgegangen, dass sie genau so sind, wie sie in Lehrbüchern für die 2xx2-Matrix definiert sind. M + N = [(- 1,2), (- 3, -5)] + [(- 6,4), (2, -4)] = [(- 7,6), (- 1, -) 9)] Daher ist seine Determinante (-7xx-9) - (- 1xx6) = 63 + 6 = 69 MXN = [(((- 1) xx (-6) + 2xx2), ((- 1) xx4 + 2xx) (-4))), (((- 1) xx2 + (- 3) xx (-4)), ((- 3) xx4 + (- 5) xx (-4)))] = [(10, -12 ), (10,8)] Daher ist MXN = (10xx8 - (- 12) xx10) = 200