Der Graph einer Exponentialfunktion mit einer Basis> 1 sollte "Wachstum" anzeigen. Das heißt, es nimmt auf der gesamten Domäne zu. Siehe Grafik:
Für eine zunehmende Funktion wie diese geht das Endverhalten am rechten "Ende" ins Unendliche. Geschrieben wie: als
Das bedeutet, dass große Potenzen von 5 immer größer werden und in Richtung Unendlich gehen. Zum Beispiel,
Das linke Ende des Diagramms scheint auf der x-Achse zu liegen, oder? Wenn Sie einige negative Potenzen von 5 berechnen, werden Sie feststellen, dass sie sehr schnell sehr klein werden (aber positiv). Zum Beispiel:
Das Alter von drei Geschwistern zusammen ist 27 Jahre alt. Das älteste ist doppelt so alt wie das jüngste. Das mittlere Kind ist 3 Jahre älter als das jüngste. Wie findest du das Alter jedes Geschwisters?
Das Alter der Kinder ist 6, 9 und 12. Lassen Sie die Farbe (rot) x das Alter des jüngsten Kindes. Wenn das älteste Kind doppelt so alt ist wie das jüngste, ist das Alter des ältesten Kindes doppelt so groß (rot) x oder Farbe (blau) (2x). Wenn das mittlere Kind 3 Jahre älter ist als das jüngste, ist das Alter des mittleren Kindes Farbe (Magenta) (x + 3). Wenn die Summe ihres Alters 27 ist, dann ist Farbe (Rot) x + Farbe (Blau) (2x) + Farbe (Magenta) (x + 3) = 27Farbe (Weiß) (Aaa). Kombinieren Sie wie die Begriffe 4x + 3 = 27Farbe ( weiß) (aaa) Farbe (weiß) (aa) -3Farbe (wei&
Der Graph der Funktion f (x) = (x + 2) (x + 6) ist unten gezeigt. Welche Aussage zur Funktion trifft zu? Die Funktion ist für alle reellen Werte von x mit x> -4 positiv. Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Die Kerndichte eines Planeten ist rho_1 und die der äußeren Hülle ist rho_2. Der Radius des Kerns ist R und der des Planeten 2R. Das Gravitationsfeld an der äußeren Oberfläche des Planeten ist das gleiche wie an der Oberfläche des Kerns, was das Verhältnis rho / rho_2 ist. ?
3 Nehmen wir an, die Masse des Kerns des Planeten ist m und die der äußeren Schale ist m '. Das Feld auf der Oberfläche des Kerns ist (Gm) / R ^ 2. Auf der Oberfläche der Schale wird es (G (m + m ')) / (2R) ^ 2 Gegebenermaßen sind beide gleich, also (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 oder 4m = m + m 'oder m' = 3m Nun ist m = 4/3 pi R ^ 3 rho_1 (Masse = Volumen * Dichte) und m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Daher ist 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Also ist rho_1 = 7/3 rho_2 oder (rho_1) / (rho_1) / ) = 7/3