Antworten:
Domain
Angebot
Erläuterung:
Angesichts der diskreten Beziehung
Die Domäne ist die Sammlung von Werten für
und
Der Bereich ist die Sammlung von Werten für
(Übrigens können Sie feststellen, dass diese Beziehung keine Funktion ist, da
An der Hannover High School gibt es 950 Schüler. Das Verhältnis der Anzahl der Erstsemester zu allen Schülern beträgt 3:10. Das Verhältnis der Anzahl der Schüler zu allen Schülern beträgt 1: 2. Wie ist das Verhältnis zwischen der Anzahl der Erstsemester und der zweiten Klasse?
3: 5 Sie wollen zuerst herausfinden, wie viele Studienanfänger es in der High School gibt. Da das Verhältnis von Erstsemester zu allen Schülern 3:10 beträgt, machen Neulinge 30% aller 950 Schüler aus, was bedeutet, dass es 950 (0,3) = 285 Erstsemester gibt. Das Verhältnis der Anzahl der Schülerinnen und Schüler zu allen Schülern beträgt 1: 2, was bedeutet, dass die Schülerinnen und Schüler die Hälfte aller Schüler ausmachen. Also 950 (.5) = 475 Sophomores. Da Sie nach dem Verhältnis von Anzahl zu Studienanfängern zu Zweitstudenten suchen, sollt
Wie lauten der Scheitelpunkt, die Symmetrieachse, der Maximal- oder Minimalwert, der Bereich und der Bereich der Funktion und die x- und y-Abschnitte für y = x ^ 2 - 3?
Da dies in der Form y = (x + a) ^ 2 + b ist: a = 0-> Symmetrieachse: x = 0 b = -3-> Scheitelpunkt (0, -3) ist auch der y-Achsenabschnitt Da der Koeffizient des Quadrats ist positiv (= 1) Dies ist eine sogenannte "Talparabel" und der Y-Wert des Scheitelpunkts ist auch das Minimum. Es gibt kein Maximum, also kann der Bereich: -3 <= y <oo x einen beliebigen Wert haben, also domain: -oo <x <+ oo Die x-Abschnitte (wobei y = 0) sind (-sqrt3,0) und (+ sqrt3,0) graph {x ^ 2-3 [-10, 10, -5, 5]}
Was sind der Scheitelpunkt, die Symmetrieachse, der Maximal- oder Minimalwert, der Bereich und der Bereich der Funktion und die x- und y-Abschnitte für y = x ^ 2-10x + 2?
Y = x ^ 2-10x + 2 ist die Gleichung einer Parabel, die sich nach oben öffnet (wegen des positiven Koeffizienten von x ^ 2). Es wird also ein Minimum angezeigt. Die Steigung dieser Parabel ist (dy) / (dx) = 2x-10 und diese Steigung ist am Scheitelpunkt gleich Null. 2x - 10 = 0 -> 2x = 10 -> x = 5 Die X-Koordinate des Scheitelpunkts wird 5 y = 5 ^ 2-10 (5) +2 = sein 25-50 + 2 = -23 Der Scheitelpunkt hat die Farbe (blau) ((5, -23) und die Mindestwertfarbe (blau) (-23 an dieser Stelle). Die Symmetrieachse ist die Farbe (blau) (x) = 5 Die Domäne ist color (blau) (inRR (alle reellen Zahlen)) Der Bereich dieser Gl