Antworten:
Erläuterung:
Ich werde das geben
Aus den gegebenen Informationen können zwei Gleichungen gemacht werden. Hier sind ein paar Dinge, an die ich mich erinnern muss, bevor ich die Gleichungen mache:
- Das Wort "ist" bedeutet "gleich", also überall, wo Sie das Wort "ist" sehen, können Sie ein verwenden
#=# Zeichen. - "Mehr als" bedeutet Addition und "Weniger als" bedeutet Subtraktion. Sie können also eine
#+# Zeichen und a#-# unterzeichnen, wenn Sie diese Sätze sehen. - "Drei Zehntel" ist die ausgeschriebene Form von
#3/10# , also werde ich das in der Gleichung verwenden.
Also hier sind die Ausdrücke in Gleichungen umgewandelt:
Setzen Sie nun den Wert für
Das Foto ist
Die Länge eines Rechtecks beträgt 12 cm mehr als das 6-fache der Breite. Der Umfang beträgt 108 cm. Wie findest du Länge und Breite?
Breite = 6 cm und Länge = 48 cm Bei Wortproblemen, bei denen Sie eine Gleichung wünschen, müssen Sie zuerst die unbekannten Größen definieren. Es hilft, die kleinere Menge als x zu wählen und die anderen Mengen in Form von x zu schreiben. Die Breite des Rechtecks sei x. 6 mal die Breite ist 6x. Die Länge ist 12cm länger als 6x. Die Länge ist 6x + 12. Der Umfang von 108cm besteht aus 4 Seiten, die zusammengefügt werden, 2 Längen und 2 Breiten. Schreibe dies. X + x + (6x + 12) + (6x + 12) = 108 "löse jetzt nach" x 14x +24 = 108 14x = 84 x = 6 x = 6 ist di
Die Länge eines Rechtecks beträgt das Dreifache seiner Breite. Wenn die Länge um 2 Zoll und die Breite um 1 Zoll vergrößert würde, würde der neue Umfang 62 Zoll betragen. Was ist die Breite und Länge des Rechtecks?
Länge ist 21 und Breite ist 7. Ich benutze l für Länge und w für Breite. Zuerst wird angegeben, dass l = 3w gilt. Neue Länge und Breite ist l + 2 bzw. w + 1. Neuer Umfang ist 62. Also, l + 2 + l + 2 + w + 1 + w + 1 = 62 oder, 2l + 2w = 56 l + w = 28 Nun haben wir zwei Beziehungen zwischen l und w. Ersetzen Sie den ersten Wert von l in der zweiten Gleichung. Wir erhalten 3w + w = 28 4w = 28 w = 7 Setzen Sie diesen Wert von w in eine der Gleichungen: l = 3 * 7 l = 21 Also Länge ist 21 und Breite ist 7
Die Länge eines Rechtecks beträgt 5 m mehr als seine Breite. Wenn die Fläche des Rechtecks 15 m2 beträgt, wie groß sind die Abmessungen des Rechtecks auf ein Zehntel eines Zentimeter?
"length" = 7,1 m "" auf 1 Dezimalstelle gerundet "width" -Farbe (weiß) (..) = 2,1m "" auf 1 Dezimalstellenfarbe (blau) gerundet ("Ausarbeitung der Gleichung") Sei length L L sei width be w Sei Fläche a Dann sei a = Lxxw ............................ Gleichung (1) Aber in der Frage heißt es: "Die Länge eines Rechtecks ist 5 m länger als seine Breite" -> L = w + 5 Durch Ersetzen von L in Gleichung (1) haben wir also: a = Lxxw -> "" a = (w + 5) xxw Geschrieben als: a = w (w + 5) Man sagt uns, dass a = 15m ^ 2 => 15 = w (w +