Antworten:
Erläuterung:
Wenn der Rechner erlaubt ist, dann verwende direkt den Eingabewert und du bekommst so etwas
Wenn Sie dies jedoch durch lange Division tun, würde ich Ihnen raten, diese Zahl zuerst mit 100 in sqrt zu multiplizieren und später 10 vom Ergebnis zu teilen.
Hier ist was ich sagen will
Verwenden Sie lange Teilung
Durch 10 teilen und wir bekommen
Was ist die vereinfachte Form der Quadratwurzel von 10 - Quadratwurzel von 5 über Quadratwurzel von 10 + Quadratwurzel von 5?
(Quadrat (10) - Quadrat (5)) / (Quadrat (10) + Quadrat (5) = 3-2 Quadrat (2) (Quadrat (10) - Quadrat (5)) / (Quadrat (10) + Quadrat (5)) ) Farbe (weiß) ("XXX") = Abbrechen (Quadrat (5)) / Abbrechen (Quadrat (5)) * (Quadrat (2) -1) / (Quadrat (2) +1) Farbe (Weiß) (" XXX ") = (Quadrat (2) -1) / (Quadrat (2) +1) * (Quadrat (2) -1) / (Quadrat (2) -1) Farbe (weiß) (" XXX ") = ( Quadrat (2) -1) ^ 2 / ((Quadrat (2) ^ 2-1 ^ 2) Farbe (weiß) ("XXX") = (2-2sqrt2 + 1) / (2-1) Farbe (weiß) ("XXX") = 3-2sqrt (2)
Was ist die Quadratwurzel von 3 + die Quadratwurzel von 72 - die Quadratwurzel von 128 + die Quadratwurzel von 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Wir wissen, dass 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, so sqrt (108) = Quadrat (3 ^ 3 * 2 ^ 2) = 6 Quadrat (3) Quadrat (3) + Quadrat (72) - Quadrat (128) + 6 Quadrat (3) Wir wissen, dass 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, so sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Wir wissen, dass 128 = 2 ^ 7 ist , so sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Vereinfachung von 7sqrt (3) - 2sqrt (2)
Was ist die Quadratwurzel von 7 + Quadratwurzel von 7 ^ 2 + Quadratwurzel von 7 ^ 3 + Quadratwurzel von 7 ^ 4 + Quadratwurzel von 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Als erstes können wir die Wurzeln von denen mit den geraden Potenzen löschen. Da: sqrt (x ^ 2) = x und sqrt (x ^ 4) = x ^ 2 für eine beliebige Zahl, können wir einfach sagen, dass sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nun kann 7 ^ 3 als 7 ^ 2 * 7 umgeschrieben werden. und das 7 ^ 2 kann aus der Wurzel gehen! Dasselbe gilt für 7 ^ 5, aber es wird als 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt umgeschrieben (7)