Antworten:
Erläuterung:
Um die Länge eines Liniensegments aus zwei Punkten herauszufinden, können wir einen Vektor bilden und die Länge des Vektors ermitteln.
Der Vektor aus zwei Punkten
Also zu finden
Wir haben den Vektor gefunden
Ob
Dann Länge von
Daher für JL:
Antworten:
Erläuterung:
# "Zur Berechnung der Länge verwenden Sie die Entfernungsformel" Farbe (blau) "#
#Farbe (rot) (Balken (ul (| Farbe (weiß) (2/2) Farbe (schwarz)) (d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ^ 2)) Farbe (weiß) (2/2) |))) # woher
# (x_1, y_1), (x_2, y_2) "sind 2 Punkte" #
# "die 2 Punkte sind" J (2,4), L (-6, -3) #
# "let" (x_1, y_1) = (2,4), (x_2, y_2) = (- 6, -3) #
# d = sqrt ((- 6-2) ^ 2 + (- 3-4) ^ 2) #
#color (weiß) (d) = sqrt (64 + 49) #
#color (weiß) (d) = sqrt113larrcolor (rot) "genauer Wert" #
#color (white) (d) ~~ 10.63 "auf 2 Dezimalstellen" #
Die Fläche des Trapezes beträgt 56 Einheiten². Die obere Länge ist parallel zur unteren Länge. Die obere Länge beträgt 10 Einheiten und die untere Länge beträgt 6 Einheiten. Wie würde ich die Höhe finden?
Trapezbereich = 1/2 (b_1 + b_2) xxh Verwenden Sie die Flächenformel und die im Problem angegebenen Werte ... 56 = 1/2 (10 + 6) xxh Lösen Sie nun nach h ... h = 7 Einheiten hoffe das hat geholfen
Das PERIMETER des gleichschenkligen Trapezes ABCD beträgt 80 cm. Die Länge der Linie AB ist viermal größer als die Länge einer CD-Linie, die 2/5 der Länge der Linie BC (oder der Linien, die in der Länge gleich sind) beträgt. Was ist die Fläche des Trapezes?
Die Fläche des Trapezes beträgt 320 cm 2. Das Trapez sei wie folgt: Wenn wir die kleinere Seite CD = a und die größere Seite AB = 4a und BC = a / (2/5) = (5a) / 2 annehmen. Als solches gilt BC = AD = (5a) / 2, CD = a und AB = 4a. Daher ist der Umfang (5a) / 2xx2 + a + 4a = 10a. Aber der Umfang beträgt 80 cm. Daher ist a = 8 cm. und zwei parallele Seiten, die als a und b dargestellt sind, sind 8 cm. und 32 cm. Nun zeichnen wir die Senkrechten von C und D nach AB, die zwei identische rechtwinklige Dreiecke bilden, deren Hypotenuse 5 / 2xx8 = 20 cm beträgt. und die Basis ist (4xx8-8) / 2 = 12 und
Das Becken wird in zwei Stunden mit zwei Tuben gefüllt. Die erste Röhre füllt den Pool 3h schneller als die zweite Röhre. Wie viele Stunden dauert es, die Röhre nur mit der zweiten Röhre zu füllen?
Wir müssen durch eine rationale Gleichung lösen. Wir müssen herausfinden, welcher Bruchteil der gesamten Wanne in 1 Stunde gefüllt werden kann. Angenommen, die erste Röhre ist x, muss die zweite Röhre x + 3 sein. 1 / x + 1 / (x + 3) = 1/2 Lösen Sie für x, indem Sie einen gleichen Nenner aufsetzen. Die LCD ist (x + 3) (x) (2). 1 (x + 3) (2) + 1 (2x) = (x) (x + 3) 2x + 6 + 2x = x ^ 2 + 3x 0 = x ^ 2 - x - 6 0 = (x - 3) (x + 2) x = 3 und -2 Da ein negativer Wert von x nicht möglich ist, beträgt die Lösung x = 3. Daher dauert es 3 + 3 = 6 Stunden, um den Pool mit der zweite