Per Definition ist eine Quadratwurzel einer beliebigen Zahl eine Zahl, die, wenn sie mit sich selbst multipliziert wird, eine ursprüngliche Zahl ergibt.
Wenn nur ein Zeichen einer Quadratwurzel verwendet wird, z
Wenn wir sowohl positive als auch negative Quadratwurzeln wollen, ist es üblich, sie zu verwenden
Wenn es sich nicht um eine Zahl handelt, von der eine Quadratwurzel genommen werden kann, sondern um einen algebraischen Ausdruck, werden Sie möglicherweise einen anderen einfacheren algebraischen Ausdruck vorfinden, der den ursprünglichen Ausdruck erzeugt, wenn er quadriert wird. Zum Beispiel können Sie gleichsetzen
(Beachten Sie den absoluten Wert, da ein Zeichen einer Quadratwurzel, wie oben angegeben, traditionell nur den nicht negativen Wert impliziert).
In einem bestimmten Fall dieses Problems gibt es keinen einfacheren algebraischen Ausdruck einer Quadratwurzel als
Die Tatsache, dass
Außerdem sollte beachtet werden, dass dieser Ausdruck normalerweise in einer Domäne von betrachtet wird echt Zahlen (sofern nicht ausdrücklich angegeben, dass es sich in einer Domäne von Komplex Zahlen). Dies impliziert eine Einschränkung für
Nur wenn
Was ist die vereinfachte Form der Quadratwurzel von 10 - Quadratwurzel von 5 über Quadratwurzel von 10 + Quadratwurzel von 5?
(Quadrat (10) - Quadrat (5)) / (Quadrat (10) + Quadrat (5) = 3-2 Quadrat (2) (Quadrat (10) - Quadrat (5)) / (Quadrat (10) + Quadrat (5)) ) Farbe (weiß) ("XXX") = Abbrechen (Quadrat (5)) / Abbrechen (Quadrat (5)) * (Quadrat (2) -1) / (Quadrat (2) +1) Farbe (Weiß) (" XXX ") = (Quadrat (2) -1) / (Quadrat (2) +1) * (Quadrat (2) -1) / (Quadrat (2) -1) Farbe (weiß) (" XXX ") = ( Quadrat (2) -1) ^ 2 / ((Quadrat (2) ^ 2-1 ^ 2) Farbe (weiß) ("XXX") = (2-2sqrt2 + 1) / (2-1) Farbe (weiß) ("XXX") = 3-2sqrt (2)
Was ist die Quadratwurzel von 3 + die Quadratwurzel von 72 - die Quadratwurzel von 128 + die Quadratwurzel von 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Wir wissen, dass 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, so sqrt (108) = Quadrat (3 ^ 3 * 2 ^ 2) = 6 Quadrat (3) Quadrat (3) + Quadrat (72) - Quadrat (128) + 6 Quadrat (3) Wir wissen, dass 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, so sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Wir wissen, dass 128 = 2 ^ 7 ist , so sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Vereinfachung von 7sqrt (3) - 2sqrt (2)
Was ist die Quadratwurzel von 7 + Quadratwurzel von 7 ^ 2 + Quadratwurzel von 7 ^ 3 + Quadratwurzel von 7 ^ 4 + Quadratwurzel von 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Als erstes können wir die Wurzeln von denen mit den geraden Potenzen löschen. Da: sqrt (x ^ 2) = x und sqrt (x ^ 4) = x ^ 2 für eine beliebige Zahl, können wir einfach sagen, dass sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nun kann 7 ^ 3 als 7 ^ 2 * 7 umgeschrieben werden. und das 7 ^ 2 kann aus der Wurzel gehen! Dasselbe gilt für 7 ^ 5, aber es wird als 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt umgeschrieben (7)