Antworten:
Erläuterung:
"Ähnliche" Dreiecke haben gleiche Seitenverhältnisse oder -verhältnisse. Somit sind die Optionen für ähnliche Dreiecke die drei Dreiecke, die mit einer anderen Seite des Originals konstruiert wurden, die für das Verhältnis zur Seite "7" des ähnlichen Dreiecks ausgewählt wird.
1)
Seiten:
2)
Seiten:
3)
Seiten:
Das Dreieck A hat Seiten der Längen 12, 1 4 und 11. Das Dreieck B ähnelt dem Dreieck A und hat eine Seite der Länge 4. Was sind die möglichen Längen der anderen beiden Seiten des Dreiecks B?
Die anderen beiden Seiten sind: 1) 14/3 und 11/3 oder 2) 24/7 und 22/7 oder 3) 48/11 und 56/11 Da B und A ähnlich sind, stehen ihre Seiten in den folgenden möglichen Verhältnissen: 4/12 oder 4/14 oder 4/11 1) Verhältnis = 4/12 = 1/3: Die anderen beiden Seiten von A sind 14 * 1/3 = 14/3 und 11 * 1/3 = 11/3 2 ) Verhältnis = 4/14 = 2/7: die anderen beiden Seiten sind 12 * 2/7 = 24/7 und 11 * 2/7 = 22/7 3) Verhältnis = 4/11: die anderen beiden Seiten sind 12 * 4/11 = 48/11 und 14 * 4/11 = 56/11
Das Dreieck A hat Seiten der Längen 12, 1 4 und 11. Das Dreieck B ähnelt dem Dreieck A und hat eine Seite der Länge 9. Was sind die möglichen Längen der anderen beiden Seiten des Dreiecks B?
Mögliche Längen von zwei anderen Seiten sind Fall 1: 10,5, 8,25 Fall 2: 7,7143, 7,0714 Fall 3: 9,8182, 11,4545 Die Dreiecke A und B sind ähnlich. Fall (1): .9 / 12 = b / 14 = c / 11 b = (9 * 14) / 12 = 10,5 c = (9 * 11) / 12 = 8,25 Mögliche Längen der anderen zwei Seiten des Dreiecks B sind 9 , 10,5, 8,25 Fall (2): 0,9 / 14 = b / 12 = c / 11 b = (9 * 12) / 14 = 7,7143 c = (9 * 11) / 14 = 7,0714 Mögliche Längen von zwei anderen Seiten von Dreieck B sind 9, 7.7143, 7.0714. Fall (3): .9 / 11 = b / 12 = c / 14 b = (9 * 12) / 11 = 9.8182 c = (9 * 14) / 11 = 11.4545 Mögliche Längen vo
Das Dreieck A hat Seiten der Längen 1 3, 1 4 und 11. Das Dreieck B ähnelt dem Dreieck A und hat eine Seite der Länge 4. Was sind die möglichen Längen der anderen beiden Seiten des Dreiecks B?
Gegebenes Dreieck A: 13, 14, 11 Dreieck B: 4,56 / 13,44 / 13 Dreieck B: 26/7, 4, 22/7 Dreieck B: 52/11, 56/11, 4 Das Dreieck B sollte Seiten haben x, y, z verwenden Sie dann Verhältnis und Verhältnis, um die anderen Seiten zu finden. Wenn die erste Seite des Dreiecks B x = 4 ist, finde y, z löse nach y: y / 14 = 4/13 y = 14 * 4/13 y = 56/13 `` `` `` `` `` ` `` `` `` `` `` `` `` `` `` `` `` `` `für z lösen: z / 11 = 4/13 z = 11 * 4/13 z = 44 / 13 Dreieck B: 4, 56/13, 44/13 der Rest ist für das andere Dreieck B gleich, wenn die zweite Seite des Dreiecks B y = 4 ist, und x und z für x suchen