Die Kreisgleichung in Standardform lautet
Woher
Wir wissen das
Aber wir wissen, dass das durchgeht
Schließlich haben wir die Standardform dieses Kreises
Antworten:
Erläuterung:
Lassen Sie die Gleichung des unbekannten Kreises mit dem Mittelpunkt
Da geht der obige Kreis durch den Punkt
Rahmen
Wie lautet die Standardform der Gleichung eines Kreises mit dem Mittelpunkt eines Kreises (-15,32) und geht durch den Punkt (-18,21)?
(x + 15) ^ 2 + (y-32) ^ 2 = 130 Die Standardform eines Kreises, der bei (a, b) zentriert ist und einen Radius r aufweist, ist (xa) ^ 2 + (yb) ^ 2 = r ^ 2 . In diesem Fall haben wir also den Mittelpunkt, aber wir müssen den Radius finden und können dies tun, indem wir den Abstand vom Mittelpunkt zum angegebenen Punkt ermitteln: d ((- 15,32); (- 18,21)) = sqrt ((-18 - (- 15)) ^ 2+ (21-32) ^ 2) = sqrt130 Daher lautet die Gleichung des Kreises (x + 15) ^ 2 + (y-32) ^ 2 = 130
Was ist die Standardform der Gleichung eines Kreises mit Mittelpunkt ist an Punkt (5,8) und die durch den Punkt (2,5) verläuft?
(x - 5) ^ 2 + (y - 8) ^ 2 = 18 Standardform eines Kreises ist (x - a) ^ 2 + (y - b) ^ 2 = r ^ 2 wobei (a, b) der ist Mittelpunkt des Kreises und r = Radius. In dieser Frage ist das Zentrum bekannt, r aber nicht. Um r zu finden, ist der Abstand vom Zentrum zum Punkt (2, 5) jedoch der Radius. Mit Hilfe der Abstandsformel können wir tatsächlich r ^ 2 r ^ 2 = (x_2 - x_1) ^ 2 + (y_2 - y_1) ^ 2 finden, indem wir nun (2, 5) = (x_2, y_2) und (5, 8) = (x_1, y_1), dann (5 - 2) ^ 2 + (8 - 5) ^ 2 = 3 ^ 2 + 3 ^ 2 = 9 + 9 = 18 Gleichung des Kreises: (x - 5) ^ 2 + (y - 8) ^ 2 = 18.
Was ist die Standardform der Gleichung eines Kreises mit mit dem Mittelpunkt (3,0) und die durch den Punkt (5,4) geht?
Ich habe gefunden: x ^ 2 + y ^ 2-6x-11 = 0 Schauen Sie mal: