In diesem Fall möchten Sie kein negatives Argument für die Quadratwurzel (Sie können die Lösung einer negativen Quadratwurzel nicht finden, zumindest nicht als reelle Zahl).
Was Sie tun, ist das "Auferlegen", dass das Argument immer positiv oder Null ist (Sie kennen die Quadratwurzel einer positiven Zahl oder Null).
Sie setzen also das Argument größer oder gleich Null und lösen nach
Und schlussendlich:
Also die Werte von
Prüfen Sie es selbst, indem Sie beispielsweise ersetzen
Der Graph der Funktion f (x) = (x + 2) (x + 6) ist unten gezeigt. Welche Aussage zur Funktion trifft zu? Die Funktion ist für alle reellen Werte von x mit x> -4 positiv. Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Das PERIMETER des gleichschenkligen Trapezes ABCD beträgt 80 cm. Die Länge der Linie AB ist viermal größer als die Länge einer CD-Linie, die 2/5 der Länge der Linie BC (oder der Linien, die in der Länge gleich sind) beträgt. Was ist die Fläche des Trapezes?
Die Fläche des Trapezes beträgt 320 cm 2. Das Trapez sei wie folgt: Wenn wir die kleinere Seite CD = a und die größere Seite AB = 4a und BC = a / (2/5) = (5a) / 2 annehmen. Als solches gilt BC = AD = (5a) / 2, CD = a und AB = 4a. Daher ist der Umfang (5a) / 2xx2 + a + 4a = 10a. Aber der Umfang beträgt 80 cm. Daher ist a = 8 cm. und zwei parallele Seiten, die als a und b dargestellt sind, sind 8 cm. und 32 cm. Nun zeichnen wir die Senkrechten von C und D nach AB, die zwei identische rechtwinklige Dreiecke bilden, deren Hypotenuse 5 / 2xx8 = 20 cm beträgt. und die Basis ist (4xx8-8) / 2 = 12 und
Was ist die Domäne der kombinierten Funktion h (x) = f (x) - g (x), wenn die Domäne von f (x) = (4,4,5) und die Domäne von g (x) [4, 4,5 ist )
Die Domäne ist D_ {f-g} = (4,4,5). Siehe Erklärung. (f-g) (x) kann nur für diejenigen x berechnet werden, für die sowohl f als auch g definiert sind. Also können wir das schreiben: D_ {f-g} = D_fnnD_g Hier haben wir D_ {f-g} = (4,4.5) nn [4,4.5] = (4,4.5)