Die Antwort, die Ihr Lehrer geben wird, hängt davon ab, wo Sie in Ihrem Mathematikunterricht sind.
Es gibt keine positive oder negative Zahl, die die Quadratwurzel von ist
Wenn wir eine positive Zahl ermitteln, erhalten wir eine positive Antwort.
Wenn wir eine negative Zahl angeben, erhalten wir immer noch eine positive Zahl.
Es gibt keine positive oder negative Zahl (reelle Zahl), deren Quadrat negativ ist.
Aber, Wir wissen das, für positive Zahlen
Aus den gleichen Gründen würden wir erwarten:
Es gibt ein Problem mit
Die Lösung besteht darin, eine neue Zahl zu erfinden, deren Quadrat ist
Mit dieser neuen Nummer können wir schreiben
Aber wenn wir unsere übliche Arithmetik beibehalten wollen, dann
Aber wir haben auch
Weil es eine Mühe ist zu schreiben und zu sagen
(In der Mathematik nennen wir es
Das Quadratwurzelsymbol bedeutet das ohne Minuszeichen, also
Was ist die vereinfachte Form der Quadratwurzel von 10 - Quadratwurzel von 5 über Quadratwurzel von 10 + Quadratwurzel von 5?
(Quadrat (10) - Quadrat (5)) / (Quadrat (10) + Quadrat (5) = 3-2 Quadrat (2) (Quadrat (10) - Quadrat (5)) / (Quadrat (10) + Quadrat (5)) ) Farbe (weiß) ("XXX") = Abbrechen (Quadrat (5)) / Abbrechen (Quadrat (5)) * (Quadrat (2) -1) / (Quadrat (2) +1) Farbe (Weiß) (" XXX ") = (Quadrat (2) -1) / (Quadrat (2) +1) * (Quadrat (2) -1) / (Quadrat (2) -1) Farbe (weiß) (" XXX ") = ( Quadrat (2) -1) ^ 2 / ((Quadrat (2) ^ 2-1 ^ 2) Farbe (weiß) ("XXX") = (2-2sqrt2 + 1) / (2-1) Farbe (weiß) ("XXX") = 3-2sqrt (2)
Was ist die Quadratwurzel von 3 + die Quadratwurzel von 72 - die Quadratwurzel von 128 + die Quadratwurzel von 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Wir wissen, dass 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, so sqrt (108) = Quadrat (3 ^ 3 * 2 ^ 2) = 6 Quadrat (3) Quadrat (3) + Quadrat (72) - Quadrat (128) + 6 Quadrat (3) Wir wissen, dass 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, so sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Wir wissen, dass 128 = 2 ^ 7 ist , so sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Vereinfachung von 7sqrt (3) - 2sqrt (2)
Was ist die Quadratwurzel von 7 + Quadratwurzel von 7 ^ 2 + Quadratwurzel von 7 ^ 3 + Quadratwurzel von 7 ^ 4 + Quadratwurzel von 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Als erstes können wir die Wurzeln von denen mit den geraden Potenzen löschen. Da: sqrt (x ^ 2) = x und sqrt (x ^ 4) = x ^ 2 für eine beliebige Zahl, können wir einfach sagen, dass sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nun kann 7 ^ 3 als 7 ^ 2 * 7 umgeschrieben werden. und das 7 ^ 2 kann aus der Wurzel gehen! Dasselbe gilt für 7 ^ 5, aber es wird als 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt umgeschrieben (7)