Die Quadratwurzel von
Antworten:
Erläuterung:
Alle positiven Zahlen haben normalerweise zwei Quadratwurzeln, eine positive und ein Negativ derselben Größe. Wir bezeichnen die positive (a.k.a.-) Hauptwurzel von
Eine Quadratwurzel einer Zahl
Die gängige Verwendung ist jedoch, dass sich "die Quadratwurzel" auf die positive Wurzel bezieht.
Angenommen, wir haben eine positive Zahl
#x = 2 + 1 / (2 + x) #
Dann multiplizieren Sie beide Seiten mit
# x ^ 2 + 2x = 2x + 5 #
Dann subtrahieren
# x ^ 2 = 5 #
Also haben wir gefunden:
#sqrt (5) = 2 + 1 / (2 + sqrt (5)) #
#Farbe (weiß) (Quadrat (5)) = 2 + 1 / (4 + 1 / (4 + 1 / (4 + 1 / (4 + 1 / (4 + …))))) #
Da diese fortgesetzte Fraktion nicht endet, können wir das feststellen
Zum Beispiel:
#sqrt (5) ~ 2 + 1 / (4 + 1/4) = 2 + 4/17 = 38/17 ~~ 2.235 #
Das Auspacken dieser fortgesetzten Bruchteile kann ein wenig langwierig sein, weshalb ich im Allgemeinen lieber eine andere Methode benutze, nämlich den Grenzwert einer rekursiv definierten Ganzzahlsequenz.
Definieren Sie eine Sequenz durch:
# {(a_0 = 0), (a_1 = 1), (a_ (n + 2) = 4a_ (n + 1) + a_n):} #
Die ersten paar Begriffe sind:
#0, 1, 4, 17, 72, 305, 1292, 5473#
Das Verhältnis zwischen den Begriffen wird dazu tendieren
Also finden wir:
#sqrt (5) ~~ 5473/1292 - 2 = 2889/1292 ~~ 2.236068 #
Was ist die vereinfachte Form der Quadratwurzel von 10 - Quadratwurzel von 5 über Quadratwurzel von 10 + Quadratwurzel von 5?
(Quadrat (10) - Quadrat (5)) / (Quadrat (10) + Quadrat (5) = 3-2 Quadrat (2) (Quadrat (10) - Quadrat (5)) / (Quadrat (10) + Quadrat (5)) ) Farbe (weiß) ("XXX") = Abbrechen (Quadrat (5)) / Abbrechen (Quadrat (5)) * (Quadrat (2) -1) / (Quadrat (2) +1) Farbe (Weiß) (" XXX ") = (Quadrat (2) -1) / (Quadrat (2) +1) * (Quadrat (2) -1) / (Quadrat (2) -1) Farbe (weiß) (" XXX ") = ( Quadrat (2) -1) ^ 2 / ((Quadrat (2) ^ 2-1 ^ 2) Farbe (weiß) ("XXX") = (2-2sqrt2 + 1) / (2-1) Farbe (weiß) ("XXX") = 3-2sqrt (2)
Was ist die Quadratwurzel von 3 + die Quadratwurzel von 72 - die Quadratwurzel von 128 + die Quadratwurzel von 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Wir wissen, dass 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, so sqrt (108) = Quadrat (3 ^ 3 * 2 ^ 2) = 6 Quadrat (3) Quadrat (3) + Quadrat (72) - Quadrat (128) + 6 Quadrat (3) Wir wissen, dass 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, so sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Wir wissen, dass 128 = 2 ^ 7 ist , so sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Vereinfachung von 7sqrt (3) - 2sqrt (2)
Was ist die Quadratwurzel von 7 + Quadratwurzel von 7 ^ 2 + Quadratwurzel von 7 ^ 3 + Quadratwurzel von 7 ^ 4 + Quadratwurzel von 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Als erstes können wir die Wurzeln von denen mit den geraden Potenzen löschen. Da: sqrt (x ^ 2) = x und sqrt (x ^ 4) = x ^ 2 für eine beliebige Zahl, können wir einfach sagen, dass sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nun kann 7 ^ 3 als 7 ^ 2 * 7 umgeschrieben werden. und das 7 ^ 2 kann aus der Wurzel gehen! Dasselbe gilt für 7 ^ 5, aber es wird als 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt umgeschrieben (7)