Antworten:
Erläuterung:
Es bezieht sich auf die erstmalige Einarbeitung von
Weil;
- Der Calvin-Zyklus beginnt mit der Reaktion von
# CO_2 # mit hochreaktiven phosphorylierten fünf Kohlenstoff-Zuckern Ribulosebisphosphat (RuBP). - Diese Reaktion wird vom Enzym katalysiert Ribulose-Bisphosphat-Carboxylase, auch als Rubisco bekannt.
- Das Produkt dieser Reaktion ist sehr instabiles Zwischenprodukt mit sechs Kohlenstoffatomen das bricht sofort ein zwei Moleküle einer Drei-Kohlenstoff-Verbindung genannt
#3# -Phosphoglycerat (PGA). - Der Kohlenstoff, der ursprünglich ein Teil war
# CO_2 # Molekül ist jetzt ein Teil einer organischen Verbindung Kohlenstoff wurde behoben .
www.khanacademy.org/science/biology/photosynthesis-in-plants/the-calvin-cycle-reactions/a/calvin-cycle
Rubisco ist das am häufigsten vorkommende Protein im Chloroplasten und wahrscheinlich das am häufigsten vorkommende Protein auf der Erde.
Der erste und der zweite Term einer geometrischen Sequenz sind jeweils der erste und der dritte Term einer linearen Sequenz. Der vierte Term der linearen Sequenz ist 10 und die Summe seiner ersten fünf Term ist 60. Finden Sie die ersten fünf Terme der linearen Sequenz?
{16, 14, 12, 10, 8} Eine typische geometrische Sequenz kann als c_0a, c_0a ^ 2, cdots, c_0a ^ k und eine typische arithmetische Sequenz als c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + dargestellt werden kDelta Mit c_0 a als erstem Element für die geometrische Sequenz haben wir {(c_0 a ^ 2 = c_0a + 2Delta -> "Erster und zweiter von GS sind der erste und dritte eines LS"), (c_0a + 3Delta = 10- > "Der vierte Term der linearen Sequenz ist 10"), (5c_0a + 10Delta = 60 -> "Die Summe der ersten fünf Term ist 60"):} Durch Auflösen von c_0, a, Delta erhalten wir c_0 = 64/3 a
Die Kerndichte eines Planeten ist rho_1 und die der äußeren Hülle ist rho_2. Der Radius des Kerns ist R und der des Planeten 2R. Das Gravitationsfeld an der äußeren Oberfläche des Planeten ist das gleiche wie an der Oberfläche des Kerns, was das Verhältnis rho / rho_2 ist. ?
3 Nehmen wir an, die Masse des Kerns des Planeten ist m und die der äußeren Schale ist m '. Das Feld auf der Oberfläche des Kerns ist (Gm) / R ^ 2. Auf der Oberfläche der Schale wird es (G (m + m ')) / (2R) ^ 2 Gegebenermaßen sind beide gleich, also (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 oder 4m = m + m 'oder m' = 3m Nun ist m = 4/3 pi R ^ 3 rho_1 (Masse = Volumen * Dichte) und m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Daher ist 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Also ist rho_1 = 7/3 rho_2 oder (rho_1) / (rho_1) / ) = 7/3
Sie haben Handtücher in drei Größen. Die Länge des ersten beträgt 3/4 m, also 3/5 der Länge des zweiten. Die Länge des dritten Handtuchs beträgt 5/12 der Summe der Längen der ersten beiden. Welcher Teil des dritten Handtuchs ist das zweite?
Verhältnis der zweiten zur dritten Handtuchlänge = 75/136 Länge des ersten Handtuchs = 3/5 m Länge des zweiten Handtuchs = (5/3) * (3/4) = 5/4 m Länge der Summe der ersten zwei Handtücher = 3/5 + 5/4 = 37/20 Länge des dritten Handtuchs = (5/12) * (37/20) = 136/60 = 34/15 m Verhältnis von zweitem zu drittem Handtuchlänge = (5/4) ) / (34/15) = (5 * 15) / (34 * 4) = 75/136