Antworten:
Reqd. Prob.
Erläuterung:
lassen Sie uns durch bezeichnen,
Um die Gesamtzahl aufzuzählen. der Ergebnisse des zufälligen Experiments des Rollen
Also insgesamt nein. von Ergebnissen
Unter diesen nicht. von den für das gegebene Ereignis günstigen Ergebnissen ist
Daher ist der Reqd. Prob.
Antworten:
Erläuterung:
In Wahrscheinlichkeitsfragen ist es sehr verwirrend, darüber nachzudenken, was passiert, wenn alles gleichzeitig geschieht! Es ist wirklich egal, ob 3 Würfel gleichzeitig oder nacheinander gewürfelt werden.
Werfen Sie den ersten Würfel … Es gibt 6 verschiedene mögliche Ergebnisse.
Was auch immer die Zahl zeigt, ist die Zahl, die wir für den zweiten und dritten Würfel erhalten möchten.
SO sind wir für die nächsten zwei Würfe auf EINES der möglichen Ergebnisse beschränkt:
P (gleiche Nummer) =
=
Sie haben drei Würfel: einen roten (R), einen grünen (G) und einen blauen (B). Wenn alle drei Würfel gleichzeitig gewürfelt werden, wie berechnet man die Wahrscheinlichkeit der folgenden Ergebnisse: überhaupt keine Sechser?
P_ (no6) = 125/216 Die Wahrscheinlichkeit, eine 6 zu würfeln, ist 1/6, die Wahrscheinlichkeit, eine 6 nicht zu würfeln, beträgt 1- (1/6) = 5/6. Da jeder Würfelwurf unabhängig ist, können sie miteinander multipliziert werden, um die Gesamtwahrscheinlichkeit zu ermitteln. P_ (no6) = (5/6) ^ 3 P_ (no6) = 125/166
Sie haben drei Würfel: einen roten (R), einen grünen (G) und einen blauen (B). Wenn alle drei Würfel gleichzeitig gewürfelt werden, wie berechnet man die Wahrscheinlichkeit der folgenden Ergebnisse: die gleiche Anzahl auf allen Würfeln?
Die Chance, dass die gleiche Anzahl auf allen 3 Würfeln liegt, beträgt 1/36. Mit einem Würfel haben wir 6 Ergebnisse. Durch Hinzufügen eines weiteren Ergebnisses haben wir nun 6 Ergebnisse für jedes Ergebnis des alten Würfels oder 6 ^ 2 = 36. Das Gleiche geschieht mit dem dritten und bringt es auf 6 ^ 3 = 216 die gleiche Nummer: 1 1 1 2 2 3 3 3 4 4 4 5 5 5 und 6 6 6 Die Chance ist also 6/216 oder 1/36.
Sie haben drei Würfel: einen roten (R), einen grünen (G) und einen blauen (B). Wenn alle drei Würfel gleichzeitig gewürfelt werden, wie berechnet man die Wahrscheinlichkeit der folgenden Ergebnisse: eine andere Anzahl bei allen Würfeln?
5/9 Die Wahrscheinlichkeit, dass sich die Zahl auf dem grünen Würfel von der Zahl auf dem roten Würfel unterscheidet, beträgt 5/6. In den Fällen, in denen der rote und der grüne Würfel unterschiedliche Zahlen haben, ist die Wahrscheinlichkeit, dass der blaue Würfel eine andere Zahl als die anderen beiden hat, 4/6 = 2/3. Daher ist die Wahrscheinlichkeit, dass sich alle drei Zahlen unterscheiden, 5/6 * 2/3 = 10/18 = 5/9. Farbe (weiß) () Alternative Methode Es gibt insgesamt 6 ^ 3 = 216 verschiedene mögliche Rohergebnisse beim Würfeln von 3 Würfeln. Es gibt 6 Mö