Antworten:
Die Steigung wäre
Erläuterung:
Eine andere Denkweise von Steigung ist der Ausdruck "Steigen über Laufen" oder:
Wenn Sie an einen kartesischen Graphen denken (alle Quadrate!), Können wir uns den "Anstieg" als die Änderung der Y-Achse gegenüber dem "Lauf" oder die Änderung der X-Achse vorstellen:
In diesem Fall ist das Dreieck
Wir können die Steigung einer Linie mit zwei Punkten berechnen, da wir die relative Änderung in berechnen können
Wenn wir sagen, dass die erste Koordinate (3,8) und die zweite (6,4) ist, können wir die Steigung berechnen:
Antworten:
Erläuterung:
Um die Piste zu finden, benutzen wir:
Es ist ehrlich egal, welche Koordinate verwendet wird
Lassen Sie uns nun beide Koordinaten in die Gleichung einfügen und lösen:
Hoffe das hilft!
Die Linie n verläuft durch die Punkte (6,5) und (0, 1). Was ist der y-Achsenabschnitt der Linie k, wenn die Linie k senkrecht zur Linie n verläuft und durch den Punkt (2,4) verläuft?
7 ist der y-Achsenabschnitt der Linie k Zuerst lassen Sie uns die Steigung für die Linie n ermitteln. (1-5) / (0-6) (-4) / - 6 2/3 = m Die Steigung der Linie n beträgt 2/3. Das heißt, die Steigung der Linie k, die senkrecht zur Linie n verläuft, ist der negative Kehrwert von 2/3 oder -3/2. Also lautet die Gleichung, die wir bisher haben: y = (- 3/2) x + b Um b oder den y-Achsenabschnitt zu berechnen, fügen Sie einfach (2,4) in die Gleichung ein. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Der y-Achsenabschnitt ist also 7
Wie lautet die Gleichung der Linie, die durch (0, -1) verläuft und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (8, -3), (1,0)?
7x-3y + 1 = 0 Die Steigung der Linie, die zwei Punkte (x_1, y_1) und (x_2, y_2) verbindet, ist gegeben durch (y_2-y_1) / (x_2-x_1) oder (y_1-y_2) / (x_1-x_2) ) Da die Punkte (8, -3) und (1, 0) sind, wird die Steigung der Verbindungslinie durch (0 - (- 3)) / (1-8) oder (3) / (- 7) gegeben. dh -3/7. Das Produkt der Neigung zweier senkrechter Linien ist immer -1. Daher ist die Steigung der Linie senkrecht dazu 7/3 und daher kann die Gleichung in Steigungsform als y = 7 / 3x + c geschrieben werden. Wenn dieser Punkt durch den Punkt (0, -1) geht, werden diese Werte in die obige Gleichung gesetzt -1 = 7/3 * 0 + c oder c = 1 Dahe
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo