Wie finde ich den genauen Wert COS (SIN ^ -1 4/5 + TAN ^ -1 5/12)?

Wie finde ich den genauen Wert COS (SIN ^ -1 4/5 + TAN ^ -1 5/12)?
Anonim

Antworten:

#rarrcos (sin ^ (- 1) (4/5) + tan ^ (- 1) (5/12)) = 16/65 #

Erläuterung:

Lassen #sin ^ (- 1) (4/5) = x # dann

# rarrsinx = 4/5 #

# rarrtanx = 1 / cotx = 1 / (sqrt (csc ^ 2x-1)) = 1 / (sqrt ((1 / sinx) ^ 2-1)) = 1 / (sqrt ((1 / (4/5))) ^ 2-1)) = 4/3 #

# rarrx = tan ^ (- 1) (4/3) = sin ^ (- 1) = (4/5) #

Jetzt,

#rarrcos (sin ^ (- 1) (4/5) + tan ^ (- 1) (5/12)) #

# = cos (tan ^ (- 1) (4/3) + tan ^ (-1) (5/12)) #

# = cos (tan ^ (-1) ((3/3 + 5/12) / (1- (4/3) * (5/12))))

# = cos (tan ^ (- 1) ((63/36) / (16/36))) #

# = cos (tan ^ (- 1) (63/16)) #

Lassen #tan ^ (- 1) (63/16) = A # dann

# rarrtanA = 63/16 #

# rarrcosA = 1 / secA = 1 / sqrt (1 + tan ^ 2A) = 1 / sqrt (1+ (63/16) ^ 2) = 16/65 #

# rarrA = cos ^ (- 1) (16/65) = tan ^ (-1) (63/16) #

#rarrcos (sin ^ (-1) (4/5) + tan ^ (-1) (5/12)) = cos (tan ^ (-1) (63/16)) = cos (cos ^ (-1)) (16/65)) = 16/65 #