Antworten:
Nach einigen geringfügigen Änderungen können wir feststellen, dass es sich um Lösungen handelt
Erläuterung:
Zuerst bekommen wir alle Konstanten zur Seite und alle
Als nächstes teilen wir uns durch
Zum Schluss nehmen wir die Quadratwurzel von beiden Seiten:
Der Grund, warum dies als zwei Lösungen zählt, besteht darin, dass eine beliebige Anzahl von Quadraten, unabhängig davon, ob sie positiv oder negativ ist, eine positive Zahl ergibt.
Die Diskriminante einer quadratischen Gleichung ist -5. Welche Antwort beschreibt die Anzahl und Art der Lösungen der Gleichung: 1 komplexe Lösung 2 echte Lösungen 2 komplexe Lösungen 1 echte Lösung?
Ihre quadratische Gleichung hat zwei komplexe Lösungen. Die Diskriminante einer quadratischen Gleichung kann nur Informationen über eine Gleichung der Form geben: y = ax ^ 2 + bx + c oder eine Parabel. Da der höchste Grad dieses Polynoms 2 ist, darf es nicht mehr als 2 Lösungen haben. Die Diskriminante ist einfach das Zeug unter dem Quadratwurzelsymbol (+ -sqrt ("")), nicht jedoch das Quadratwurzelsymbol. + -sqrt (b ^ 2-4ac) Wenn die Diskriminante b ^ 2-4ac kleiner als Null ist (d. h. eine beliebige negative Zahl), haben Sie unter einem Quadratwurzelsymbol ein Negativ. Negative Werte unter Qua
Die Lösungen von y ^ 2 + by + c = 0 sind die Kehrwerte der Lösungen von x ^ 2-7x + 12 = 0. Finde den Wert von b + c?
B + c = -1/2 Gegeben: x ^ 2-7x + 12 = 0 Durchteilen durch 12x ^ 2, um zu erhalten: 1 / 12-7 / 12 (1 / x) + (1 / x) ^ 2 = 0 Wenn wir y = 1 / x setzen und transponieren, erhalten wir: y ^ 2-7 / 12y + 1/12 = 0 Also b = -7/12 und c = 1/12 b + c = -7 / 12 + 1 / 12 = -6/12 = -1/2
Verwenden Sie den Diskriminanten, um die Anzahl und Art der Lösungen der Gleichung zu bestimmen. x ^ 2 + 8x + 12 = 0 A keine echte Lösung B. eine echte Lösung C. zwei rationale Lösungen D. zwei irrationale Lösungen
C. Zwei rationale Lösungen Die Lösung der quadratischen Gleichung a * x ^ 2 + b * x + c = 0 ist x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In das betrachtete Problem ist a = 1, b = 8 und c = 12 Anstelle von x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 oder x = (-8+) - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 und x = (-8 - 4) / 2 x = (-4) / 2 und x = (-12) / 2 x = -2 und x = -6