Die Definition eines Googolplex ist 10 bis 10 und 100.
Ein Googol ist 1, gefolgt von 100 Nullen, und ein Googolplex ist 1, gefolgt von einer Googolmenge von Nullen. Wenn Sie in einem Universum, das "ein Googolplex-Messgerät" ist, weit genug reisen würden, würden Sie wahrscheinlich erwarten, dass Sie nach Duplikaten von sich selbst suchen.
Der Grund dafür ist, dass es im Universum eine begrenzte Anzahl von Quantenzuständen gibt, die den Raum repräsentieren können, in dem sich Ihr Körper befindet.
Dieses Volumen beträgt ungefähr einen Kubikzentimeter, und die mögliche Anzahl von Zuständen, die für dieses Volumen möglich sind, beträgt 10 bis 10 und 70.
Dies ist offensichtlich viel weniger als die mögliche Anzahl von Quantenzuständen, die in jedem Kubikmeter eines Googolplex-Universums dargestellt werden könnten, und daher macht die Idee Sinn.
Quellen:
Die Summe zweier aufeinanderfolgender Zahlen ist 77. Die Differenz zwischen der Hälfte der kleineren und einem Drittel der größeren Zahl ist 6. Wenn x die kleinere Zahl ist und y die größere Zahl ist, stellen die beiden Gleichungen die Summe und die Differenz dar die Zahlen?
X + y = 77 1 / 2x-1 / 3y = 6 Wenn Sie die Zahlen wissen wollen, lesen Sie weiter: x = 38 y = 39
Der Graph von h (x) wird angezeigt. Das Diagramm scheint kontinuierlich zu sein, wo sich die Definition ändert. Zeigen Sie, dass h tatsächlich kontinuierlich ist, indem Sie die linken und rechten Grenzen finden und zeigen, dass die Definition der Kontinuität erfüllt ist.
Bitte beachten Sie die Erklärung. Um zu zeigen, dass h stetig ist, müssen wir seine Kontinuität bei x = 3 überprüfen. Wir wissen, dass h. bei x = 3, wenn und nur dann, wenn lim_ (x bis 3-) h (x) = h (3) = lim_ (x bis 3+) h (x) ............ ................... (ast). Als x bis 3, x lt 3:. h (x) = - x ^ 2 + 4x + 1. :. lim_ (x bis 3-) h (x) = lim_ (x bis 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (x bis 3-) h (x) = 4 ............................................ .......... (ast ^ 1). In ähnlicher Weise ist lim_ (x zu 3+) h (x) = lim_ (x zu 3+) 4 (0,6) ^ (x-3) = 4 (0,6) ^ 0. rArr lim_
Zwei parallele Akkorde eines Kreises mit Längen von 8 und 10 dienen als Basis eines in den Kreis eingeschriebenen Trapezes. Wenn die Länge eines Kreisradius 12 ist, wie groß ist die Fläche eines solchen beschriebenen Trapezes?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 1 und 2 Schematisch könnten wir ein Parallelogramm ABCD in einem Kreis einfügen, und unter der Bedingung, dass die Seiten AB und CD Akkorde der Kreise sind, entweder in Abbildung 1 oder in Abbildung 2. Die Bedingung, dass die Seiten AB und CD sein müssen Akkorde des Kreises implizieren, dass das eingeschriebene Trapez ein gleichschenkliges Trapez sein muss, da die Diagonalen des Trapezoids (AC und CD) gleich sind, weil A hat BD = B hat AC = B hatD C = A hat CD und die Linie senkrecht zu AB und CD durch das Zentrum E halbiert diese Akkorde (dies bedeutet, dass AF = B