Antworten:
20 und 21.
Erläuterung:
Nehmen wir an, die zwei aufeinander folgenden Zahlen sind
Msgstr "Das Quadrat der Summe zweier aufeinanderfolgender Ganzzahlen ist
Nun gibt es zwei Variablen, so dass es auf den ersten Blick unlösbar erscheint. Aber das wird uns auch gesagt
Ersetzen Sie diese neuen Informationen in:
Als Nächstes werden wir diese Schritte ausführen, um sie zu lösen
1) Nehmen Sie die Quadratwurzel von beiden Seiten. Dies ergibt zwei mögliche Ergebnisse, da sowohl positive als auch negative Zahlen positive Quadrate haben.
2) abziehen
3) Beide Seiten durch teilen
4) Überprüfen Sie die Antwort.
Das bedeutet, dass
Erfolg!
Das Produkt zweier aufeinanderfolgender ungerader Ganzzahlen beträgt 29 weniger als das Achtfache ihrer Summe. Finde die zwei ganzen Zahlen. Antworten Sie in Form gepaarter Punkte mit der niedrigsten der beiden Ganzzahlen zuerst?
(13, 15) oder (1, 3) Sei x und x + 2 die ungeradzahligen fortlaufenden Zahlen, dann haben wir laut Frage (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 - x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 oder 1 Nun, Fall I: x = 13:. x + 2 = 13 + 2 = 15:. Die Zahlen sind (13, 15). Fall II: x = 1:. x + 2 = 1+ 2 = 3:. Die Zahlen sind (1, 3). Daher werden hier zwei Fälle gebildet; Das Zahlenpaar kann sowohl (13, 15) als auch (1, 3) sein.
Die Summe zweier aufeinanderfolgender Zahlen ist 77. Die Differenz zwischen der Hälfte der kleineren und einem Drittel der größeren Zahl ist 6. Wenn x die kleinere Zahl ist und y die größere Zahl ist, stellen die beiden Gleichungen die Summe und die Differenz dar die Zahlen?
X + y = 77 1 / 2x-1 / 3y = 6 Wenn Sie die Zahlen wissen wollen, lesen Sie weiter: x = 38 y = 39
Die Formel auf die Summe der N-Ganzzahlen kennen a) Wie ist die Summe der ersten N aufeinander folgenden quadratischen Ganzzahlen: Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? b) Summe der ersten N aufeinander folgenden Würfel-Ganzzahlen Sigma_ (k = 1) ^ N k ^ 3?
Für S_k (n) = sum_ {i = 0} ^ ni ^ kS_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1 / 6n (1 + n) (1 + 2n) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Wir haben sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + Summe_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 Auflösen für sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-summe_ {i = 0} ^ ni aber summe {{i = 0} ^ ni = ((n + 1) n) / 2 so summe_ {i = 0} ^ ni ^