Antworten:
Die Steigung ist
Erläuterung:
Schreiben wir die Gleichung als
woher
und
so
Graph {8x-3y = 9 -11,25, 11,25, -5,625, 5,62}
Wenn eine Kraft von 40 N, die parallel zur Steigung und auf die Steigung gerichtet ist, auf eine Kiste mit einer reibungslosen Neigung ausgeübt wird, die 30 ° über der Horizontalen liegt, beträgt die Beschleunigung der Kiste 2,0 m / s ^ 2 in der Neigung . Die Masse der Kiste ist?
M ~ = 5,8 kg Die Nettokraft auf der Steigung ist gegeben durch F_ "net" = m * a F_ "net" ist die Summe der 40 N-Kraft auf der Steigung und die Gewichtskomponente des Objekts m * g nach unten die Steigung F_ "netto" = 40 N - m * g * sin30 = m * 2 m / s ^ 2 Lösen nach m, m * 2 m / s ^ 2 + m * 9,8 m / s ^ 2 * sin30 = 40 Nm * (2 m / s ^ 2 + 9,8 m / s ^ 2 * sin30) = 40 Nm * (6,9 m / s ^ 2) = 40 Nm = (40 N) / (6,9 m / s ^ 2) Anmerkung: der Newton entspricht kg * m / s ^ 2. (Siehe F = ma, um dies zu bestätigen.) M = (40 kg * Abbruch (m / s ^ 2)) / (4,49 Abbruch (m / s ^ 2)) = 5,8 kg Ich hof
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo
Skizzieren Sie den Graphen von y = 8 ^ x und geben Sie die Koordinaten aller Punkte an, an denen der Graph die Koordinatenachsen kreuzt. Beschreiben Sie vollständig die Transformation, die den Graphen Y = 8 ^ x in den Graphen y = 8 ^ (x + 1) transformiert.
Siehe unten. Exponentialfunktionen ohne vertikale Transformation kreuzen niemals die x-Achse. Daher hat y = 8 ^ x keine x-Abschnitte. Bei y (0) = 8 ^ 0 = 1 wird es einen y-Achsenabschnitt haben. Der Graph sollte wie folgt aussehen. Graph {8 ^ x [-10, 10, -5, 5]} Der Graph von y = 8 ^ (x + 1) ist der Graph von y = 8 ^ x, der um eine Einheit nach links verschoben wurde, so dass es y- Intercept liegt jetzt bei (0, 8). Sie werden auch sehen, dass y (-1) = 1. graph {8 ^ (x + 1) [-10, 10, -5, 5]} Hoffentlich hilft das!