Antworten:
Erläuterung:
Die Formel zur Berechnung der Entfernung zwischen zwei Punkten lautet:
Ersetzen Sie die beiden Punkte aus dem Problem und berechnen Sie die Entfernung wie folgt:
Herr Samuel ist doppelt so groß wie sein Sohn William. Williams Schwester Sarah ist 4 Fuß und 6 Zoll groß. Wenn William 3/4 so groß ist wie seine Schwester, wie groß ist Mr. Samuel?
Ich habe folgendes versucht: Lassen Sie uns die Höhen der verschiedenen Leute nennen: s, w und sa für Sarah. Wir erhalten: s = 2w sa = 54 (ich habe es in Zoll angegeben) w = 3/4 sa, also von der zweiten in die dritte: w = 3/4 * 54 = 40,5 in die erste: s = 2 * 40,5 = 81 Zoll entsprechend 6 Fuß und 9 Zoll.
Auf einer Maßstabszeichnung ist der Maßstab 1/4 Zoll = 1 Fuß. Welche Maße haben die Maßstabszeichnungen für einen Raum, der 18 Fuß mal 16 Fuß groß ist?
Nachfolgend finden Sie einen Lösungsprozess: In der Maßstabszeichnung heißt es: 1/4 "Zoll" = 1 "Fuß" Um zu ermitteln, wie viele Zoll die Raumlänge bei 18 Fuß beträgt, multiplizieren Sie jede Seite der Gleichung mit 18 18 xx 1/4 Zoll = 18 xx 1 Fuß 18/4 Zoll = 18 Fuß (16 + 2) / 4 Zoll = 18 Fuß (16/4 + 2/4) Zoll "= 18" Fuß "(4 + 1/2)" Zoll "= 18" Fuß "4 1/2" Zoll "= 18" Fuß "Um zu ermitteln, wie viele Zoll die Breite des Raumes bei 16 Fuß multipliziert, multiplizieren Sie Jede Seite
Auf ebenem Boden ist die Basis eines Baums 20 Fuß vom Fuß eines 48-Fuß-Fahnenmastes entfernt. Der Baum ist kürzer als der Fahnenmast. Zu einer bestimmten Zeit enden ihre Schatten an derselben Stelle 60 Fuß vom Fuß des Fahnenmastes entfernt. Wie groß ist der Baum?
Der Baum ist 32 Fuß hoch Gegeben: Ein Baum ist 20 Fuß von einer 48-Fuß-Fahnenstange entfernt. Der Baum ist kürzer als der Fahnenmast. Zu einem bestimmten Zeitpunkt fallen ihre Schatten an einem Punkt 60 Fuß vom Fuß der Fahnenstange entfernt zusammen. Da wir zwei Dreiecke haben, die proportional sind, können wir Proportionen verwenden, um die Höhe des Baums zu ermitteln: 48/60 = x / 40 Lösen Sie das Kreuzprodukt: a / b = c / d => ad = bc 60x = 48 * 40 = 1920 x = 1920/60 = 32 Der Baum ist 32 Meter hoch