Für f (x) = sinx wie lautet die Gleichung der Tangente bei x = (3pi) / 2?

Für f (x) = sinx wie lautet die Gleichung der Tangente bei x = (3pi) / 2?
Anonim

Antworten:

#y = -1 #

Erläuterung:

Die Gleichung der Tangente einer Funktion an #x = a # wird durch die Formel gegeben: #y = f '(a) (x-a) + f (a) #. Also brauchen wir die Ableitung von # f #.

#f '(x) = cos (x) # und #cos ((3pi) / 2) = 0 # so wissen wir, dass die tangentiale linie bei #x = 3pi / 2 # ist horizontal und ist #y = sin ((3pi) / 2) = -1 #