Antworten:
Bereich des Trapezoids
Erläuterung:
Die Fläche eines Trapezoids ist
woher
Mit anderen Worten, der Bereich eines Trapezes ist der "Durchschnitt der Basen mal die Höhe"
in diesem Fall,
und
das gibt uns
* Hinweis: Die "Seitenlängen" sind unnötige Informationen
Das PERIMETER des gleichschenkligen Trapezes ABCD beträgt 80 cm. Die Länge der Linie AB ist viermal größer als die Länge einer CD-Linie, die 2/5 der Länge der Linie BC (oder der Linien, die in der Länge gleich sind) beträgt. Was ist die Fläche des Trapezes?
Die Fläche des Trapezes beträgt 320 cm 2. Das Trapez sei wie folgt: Wenn wir die kleinere Seite CD = a und die größere Seite AB = 4a und BC = a / (2/5) = (5a) / 2 annehmen. Als solches gilt BC = AD = (5a) / 2, CD = a und AB = 4a. Daher ist der Umfang (5a) / 2xx2 + a + 4a = 10a. Aber der Umfang beträgt 80 cm. Daher ist a = 8 cm. und zwei parallele Seiten, die als a und b dargestellt sind, sind 8 cm. und 32 cm. Nun zeichnen wir die Senkrechten von C und D nach AB, die zwei identische rechtwinklige Dreiecke bilden, deren Hypotenuse 5 / 2xx8 = 20 cm beträgt. und die Basis ist (4xx8-8) / 2 = 12 und
Zwei parallele Akkorde eines Kreises mit Längen von 8 und 10 dienen als Basis eines in den Kreis eingeschriebenen Trapezes. Wenn die Länge eines Kreisradius 12 ist, wie groß ist die Fläche eines solchen beschriebenen Trapezes?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 1 und 2 Schematisch könnten wir ein Parallelogramm ABCD in einem Kreis einfügen, und unter der Bedingung, dass die Seiten AB und CD Akkorde der Kreise sind, entweder in Abbildung 1 oder in Abbildung 2. Die Bedingung, dass die Seiten AB und CD sein müssen Akkorde des Kreises implizieren, dass das eingeschriebene Trapez ein gleichschenkliges Trapez sein muss, da die Diagonalen des Trapezoids (AC und CD) gleich sind, weil A hat BD = B hat AC = B hatD C = A hat CD und die Linie senkrecht zu AB und CD durch das Zentrum E halbiert diese Akkorde (dies bedeutet, dass AF = B
Was ist die Fläche eines Trapezes mit Basislängen von 12 und 40 und Seitenlängen von 17 und 25?
A = 390 "units" ^ 2 Bitte sehen Sie sich meine Zeichnung an: Um die Fläche des Trapezes zu berechnen, benötigen wir die beiden Basislängen (die wir haben) und die Höhe h. Wenn wir wie in meiner Zeichnung die Höhe h zeichnen, sehen Sie, dass sie mit der Seite und den Teilen der langen Basis zwei rechtwinklige Dreiecke bildet. Über a und b wissen wir, dass a + b + 12 = 40 gilt, was bedeutet, dass a + b = 28. Weiterhin können wir auf die beiden rechtwinkligen Dreiecke den Satz von Pythagoras anwenden: {(17 ^ 2 = a ^ 2 + h ^ 2), (25 ^ 2 = b ^ 2 + h ^ 2):} Wir transformieren a + b =