Antworten:
Objektentfernung und Bildentfernung müssen ausgetauscht werden.
Erläuterung:
Die übliche Gaußsche Linsenformel ist als angegeben
oder
Eingegebene Werte erhalten wir
Jetzt wird die Linse bewegt, die Gleichung wird
Wir sehen, dass nur eine andere Lösung Objektentfernung und Bildentfernung sind.
Wenn also der Objektabstand gemacht wird
Wasser tritt mit einer Geschwindigkeit von 10.000 cm3 / min aus einem umgekehrten konischen Tank aus, während Wasser mit einer konstanten Rate in den Tank gepumpt wird, wenn der Tank eine Höhe von 6 m hat und der Durchmesser an der Spitze 4 m beträgt Wenn der Wasserstand bei einer Höhe von 2 m um 20 cm / min ansteigt, wie finden Sie die Geschwindigkeit, mit der das Wasser in den Tank gepumpt wird?
Sei V das Volumen des Wassers in dem Tank in cm 3; h sei die Tiefe / Höhe des Wassers in cm; und sei r der Radius der Wasseroberfläche (oben) in cm. Da der Tank ein umgekehrter Kegel ist, ist dies auch die Wassermasse. Da der Tank eine Höhe von 6 m und einen Radius am oberen Rand von 2 m hat, implizieren ähnliche Dreiecke, dass frac {h} {r} = frac {6} {2} = 3 ist, so dass h = 3r ist. Das Volumen des umgekehrten Wasserkegels ist dann V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Unterscheiden Sie nun beide Seiten bezüglich der Zeit t (in Minuten), um frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} z
Ein Objekt mit einer Masse von 8 kg befindet sich auf einer Rampe mit einer Steigung von pi / 8. Wenn das Objekt mit einer Kraft von 7 N an der Rampe nach oben gedrückt wird, wie hoch ist dann der minimale Haftreibungskoeffizient, damit das Objekt bleiben kann?
Die Gesamtkraft, die entlang der Ebene auf das Objekt nach unten wirkt, ist mg sin ((pi) / 8) = 8 * 9,8 * sin ((pi) / 8) = 30N. Die aufgebrachte Kraft ist entlang der Ebene 7N nach oben. Die Nettokraft auf das Objekt beträgt also 30-7 = 23N entlang der Ebene. Daher sollte eine statische Reibungskraft, die zum Ausgleich dieses Kraftbetrags wirken muss, entlang der Ebene nach oben wirken. Hier ist die statische Reibungskraft, die wirken kann, mu mg cos ((pi) / 8) = 72,42 mN (wobei mu der Koeffizient der statischen Reibungskraft ist). Also 72,42 mu = 23 oder mu = 0,32
Ein Objekt mit einer Masse von 5 kg befindet sich auf einer Rampe mit einer Steigung von pi / 12. Wenn das Objekt mit einer Kraft von 2 N an der Rampe nach oben gedrückt wird, wie hoch ist dann der minimale Haftreibungskoeffizient, damit das Objekt bleiben kann?
Betrachten wir die Gesamtkraft auf das Objekt: 2N die Neigung nach oben. mgsin (pi / 12) ~ 12,68 N nach unten. Daher ist die Gesamtkraft 10,68N nach unten. Nun wird die Reibungskraft als Mumgcostheta angegeben, was sich in diesem Fall auf ~ 47,33 mu N vereinfacht, also mu = 10,68 / 47,33 ~ 0,23. Anmerkung: Wäre da nicht die zusätzliche Kraft gewesen, mu = Tantheta