Wie lösen Sie arcsin (x) + arcsin (2x) = pi / 3?

Wie lösen Sie arcsin (x) + arcsin (2x) = pi / 3?
Anonim

Antworten:

# x = sqrt ((- 7 + sqrt (73)) / 16) #

Erläuterung:

#arcsin (x) + arcsin (2x) = pi / 3 #

Beginnen Sie mit dem Vermieten # alpha = arcsin (x) "" # und # "" beta = arcsin (2x) #

#color (schwarz) alpha # und #color (schwarz) beta # wirklich nur Winkel darstellen.

Damit wir haben: # alpha + beta = pi / 3 #

# => sin (alpha) = x #

#cos (alpha) = sqrt (1-sin ^ 2 (alpha)) = sqrt (1-x ^ 2) #

Ähnlich, #sin (beta) = 2x #

#cos (beta) = sqrt (1-sin ^ 2 (beta)) = sqrt (1- (2x) ^ 2) = sqrt (1-4x ^ 2) #

#Farbe weiß)#

Als nächstes betrachten

# alpha + beta = pi / 3 #

# => cos (alpha + beta) = cos (pi / 3) #

# => cos (alpha) cos (beta) -sin (alpha) sin (beta) = 1/2 #

# => sqrt (1-x ^ 2) * sqrt (1-4x ^ 2) - (x) * (2x) = 1/2 #

# => sqrt (1-4x ^ 2-x ^ 2-4x ^ 4) = 2x ^ 2 + 1/2 #

# => sqrt (1-4x ^ 2-x ^ 2-4x ^ 4) ^ 2 = 2x ^ 2 + 1/2 ^ 2 #

# => 1-5x ^ 2-4x ^ 4 = 4x ^ 4 + 2x ^ 2 + 1/4 #

# => 8x ^ 4 + 7x ^ 2-3 / 4 = 0 #

# => 32x ^ 4 + 28x ^ 2-3 = 0 #

Wenden Sie nun die quadratische Formel in der Variablen an # x ^ 2 #

# => x ^ 2 = (- 28 + - Quadrat (784 + 384)) / 64 = (- 28 + - Quadrat (1168)) / 64 = (- 28 + - Quadrat (16 * 73)) / 64 = (-7 + -sqrt (73)) / 16 #

# => x = + - sqrt ((- 7 + -sqrt (73)) / 16) #

#Farbe weiß)#

Fehlgeschlagene Fälle:

#farbe (rot) ((1) ".." ##x = + - sqrt ((- 7-sqrt (73)) / 16) #

ist abzulehnen, weil die lösung ist Komplex # inZZ #

#farbe (rot) ((2) ".." ## x = -sqrt ((- 7 + sqrt (73)) / 16) #

wird abgelehnt, weil die Lösung negativ ist. Wohingegen # pi / 3 # ist positiv.