Antworten:
Es gibt verschiedene Schreibweisen. Sie alle erfassen die gleiche Idee.
Erläuterung:
Zum
Der Graph der Funktion f (x) = (x + 2) (x + 6) ist unten gezeigt. Welche Aussage zur Funktion trifft zu? Die Funktion ist für alle reellen Werte von x mit x> -4 positiv. Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Wie lautet die zweite Ableitung der Funktion f (x) = sec x?
F '' (x) = sec x ( sec ^ 2 x + tan ^ 2 x) gegebene Funktion: f (x) = sec x Unterscheidung zwischen r.t. x wie folgt frac {d} {dx} f (x) = frac {d} {dx} ( sec x) f '(x) = sec x tan x Wieder Unterscheidung von f' (x) w.r.t. x, wir erhalten frac {d} {dx} f '(x) = frac {d} {dx} ( sec x tan x) f' '(x) = sec x frac {d} { dx} tan x + tan x frac {d} {dx} secx = sec xsec ^ 2 x + tan x sec x tan x = sec ^ 3 x + sec x tan ^ 2 x = sec x ( sec ^ 2 x + tan ^ 2 x)
Wie verwendet man die Grenzwertdefinition der Ableitung, um die Ableitung von y = -4x-2 zu finden?
-4 Die Ableitung wird wie folgt definiert: lim (h-> 0) (f (x + h) -f (x)) / h Wenden wir die obige Formel auf die gegebene Funktion an: lim (h-> 0) (f (x + h) - f (x)) / h = lim (h -> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h -> 0 ) (- 4x - 4h - 2 + 4x + 2) / h = lim (h -> 0) ((- 4h) / h) Vereinfachung durch h = lim (h -> 0) (- 4) = -4