Antworten:
Erläuterung:
Dies scheint die geometrische Reihe zu sein
Eine andere Schreibweise wäre:
In deiner Frage
Die Antwort wird einfach ausgewertet, indem man
Oder alternativ, indem Sie das Muster Ihrer bereits angegebenen Serienwerte befolgen:
Der Graph der Linie l in der xy-Ebene verläuft durch die Punkte (2,5) und (4,11). Der Graph der Linie m hat eine Steigung von -2 und einen x-Achsenabschnitt von 2. Wenn der Punkt (x, y) der Schnittpunkt der Linien l und m ist, wie lautet dann der Wert von y?
Y = 2 Schritt 1: Bestimmen Sie die Gleichung der Linie l Wir haben die Steigungsformel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Jetzt nach Punkt-Steigungsform Die Gleichung lautet y - y_1 = m (x - x_1) y - 11 = 3 (x - 4) y = 3x - 12 + 11 y = 3x - 1 Schritt 2: Bestimmen Sie die Gleichung der Linie m. Der x - Achsenabschnitt wird immer angezeigt habe y = 0. Daher ist der angegebene Punkt (2, 0). Mit der Steigung haben wir die folgende Gleichung. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Schritt 3: Schreiben und lösen eines Gleichungssystems Wir möchten die Lösung des Systems {(y =) finden
Das nächste Modell eines Sportwagens kostet 13,8% mehr als das aktuelle Modell. Das aktuelle Modell kostet 53.000 US-Dollar. Wie viel wird der Preis in Dollar steigen? Was kostet der Preis für das nächste Modell?
$ 60314> $ 53000 "bedeutet" 100% "der ursprünglichen Kosten" 100 + 13,8 = 113,8% = 113,8 / 100 = 1,138 "Multiplikation mit 1,138 ergibt die Kosten nach der Erhöhung" "Preis" = 53000xx1.138 = $ 60314
Mit dem gegebenen Muster, das hier fortfährt, wie kann man den n-ten Term jeder durch das Muster vorgeschlagenen Sequenz aufschreiben? (A) -2,4, -6,8, -10, ... (B) -1,1, -1,1, -1, .....
(A) a_n = (-1) ^ n * 2n (B) b_n = (-1) ^ n Gegeben: (A) -2, 4, -6, 8, -10, ... (B) -1 , 1, -1, 1, -1, ... Beachten Sie, dass wir das Verhalten von (-1) ^ n verwenden können, um abwechselnde Zeichen zu erhalten, die eine geometrische Sequenz mit dem ersten Term -1 bilden, nämlich: 1, 1, -1, 1, -1, ... Es gibt bereits unsere Antwort auf (B): Der n-te Term ist gegeben durch b_n = (-1) ^ n. Für (A) ist zu beachten, dass, wenn wir die Zeichen ignorieren und die Reihenfolge 2, 4, 6, 8, 10, ... berücksichtigen, der allgemeine Ausdruck 2n ist. Daher finden wir, dass die Formel, die wir brauchen, ist: a_n = (-1)