Antworten:
Vergessen Sie nicht die Mittelfrist- und Triggergleichungen.
Erläuterung:
Daher:
Antworten:
Siehe die Erklärung
Erläuterung:
Wir wissen,
Ersatz
Also bewiesen
Zeigen Sie, dass cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2 ist. Ich bin etwas verwirrt, wenn ich Cos²4π / 10 = cos² (π-6π / 10) und cos²9π / 10 = cos² (π-π / 10) mache, es wird negativ als cos (180 ° -theta) = - costheta in der zweite Quadrant. Wie überprüfe ich die Frage?
Siehe unten. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4 pi) / 10)] = 2 * 1 = 2 = RHS
Beweisen Sie es: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Beweis unten mit Konjugaten und trigonometrischer Version des Satzes von Pythagorean. Teil 1 (1-cosx) / (1 + cosx)) Farbe (weiß) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) Farbe (weiß) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) Farbe (weiß) ("XXX") = (1-cosx) / sqrt (1-cos ^) 2x) Teil 2 Ähnlich (2 + cosx) / (1-cosx) -Farbe (weiß) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Teil 3: Kombination der Begriffe sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) Farbe (weiß) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x)
Wie beweisen Sie (cosx / (1 + sinx)) + ((1 + sinx) / cosx) = 2secx?
Wandeln Sie die linke Seite in Terme mit dem gemeinsamen Nenner um und addieren Sie (cos ^ 2 + sin ^ 2 zu 1 auf dem Weg). Vereinfachung der Definition von sec = 1 / cos (cos (x) / (1 + sin (x))) + ((1 + sin (x)) / cos (x)) = (cos ^ 2 (x)) + 1 + 2sin (x) + sin ^ 2 (x)) / (cos (x) (1 + sin (x) = (2 + 2sin (x)) / (cos (x) (1 + sin (x)) ) = 2 / cos (x) = 2 * 1 / cos (x) = 2 s (x)