
Antworten:
Die Ableitung von Null ist Null. Das ist sinnvoll, weil es eine konstante Funktion ist.
Erläuterung:
Limitdefinition der Ableitung:
Null ist eine Funktion von x so
So
Antworten:
Die Antwort ist 0.
Erläuterung:
Die Kosten für die Stifte variieren direkt mit der Anzahl der Stifte. Ein Stift kostet 2,00 $. Wie finden Sie k in der Gleichung für die Kosten für Stifte, verwenden Sie C = kp, und wie finden Sie die Gesamtkosten von 12 Stiften?

Die Gesamtkosten für 12 Stifte betragen 24 US-Dollar. C prop p:. C = k * p; C = 2,00, p = 1:. 2 = k * 1:. k = 2:. C = 2p {k ist konstant] p = 12, C =? C = 2 * p = 2 * 12 = 24,00 $ Die Gesamtkosten von 12 Pens betragen 24,00 $. [ANS]
Wie findet man die Ableitung von f (x) = 3x ^ 5 + 4x anhand der Limitdefinition?

F '(x) = 15x ^ 4 + 4 Die Grundregel lautet, dass x ^ n zu nx ^ (n-1) wird, also 5 * 3x ^ (5-1) + 1 * 4x ^ (1-1). Dies ist f '(x) = 15x ^ 4 + 4
Wie verwendet man die Grenzwertdefinition der Ableitung, um die Ableitung von y = -4x-2 zu finden?

-4 Die Ableitung wird wie folgt definiert: lim (h-> 0) (f (x + h) -f (x)) / h Wenden wir die obige Formel auf die gegebene Funktion an: lim (h-> 0) (f (x + h) - f (x)) / h = lim (h -> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h -> 0 ) (- 4x - 4h - 2 + 4x + 2) / h = lim (h -> 0) ((- 4h) / h) Vereinfachung durch h = lim (h -> 0) (- 4) = -4