Antworten:
Die Länge von drei Seiten des Dreiecks beträgt
Erläuterung:
Basis des Isocellendreiecks ist
Wir wissen, dass der Bereich des Dreiecks ist
Beine sind
Die Länge von drei Seiten des Dreiecks beträgt
Antworten:
Die Seiten sind
Erläuterung:
Die Länge der Seite
Lass die Höhe des Dreiecks sein
Die Fläche des Dreiecks ist
Die Höhe des Dreiecks ist
Der Mittelpunkt von
Die Steigung von
Die Steigung der Höhe ist
Die Höhengleichung ist
Der Kreis mit der Gleichung
Der Schnittpunkt dieses Kreises mit der Höhe ergibt die dritte Ecke.
Wir lösen diese quadratische Gleichung
Die Punkte sind
Die Länge von
Zwei Ecken eines gleichschenkligen Dreiecks liegen bei (1, 2) und (3, 1). Wenn die Fläche des Dreiecks 12 beträgt, wie lang sind die Seiten des Dreiecks?
Maß der drei Seiten ist (2.2361, 10.7906, 10.7906) Länge a = sqrt ((3-1) ^ 2 + (1-2) ^ 2) = sqrt 5 = 2.2361 Fläche von Delta = 12:. h = (Fläche) / (a / 2) = 12 / (2,2361 / 2) = 12 / 1,1181 = 10,7325 Seite b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((1,1181) ^ 2 + (10.7325) ^ 2) b = 10.7906 Da das Dreieck gleichschenklig ist, ist die dritte Seite auch = b = 10.7906. Das Maß der drei Seiten ist (2.2361, 10.7906, 10.7906).
Zwei Ecken eines gleichschenkligen Dreiecks liegen bei (1, 2) und (1, 7). Wenn die Fläche des Dreiecks 64 beträgt, wie lang sind die Seiten des Dreiecks?
"Die Seitenlänge ist" 25.722 bis 3 Dezimalstellen ". Die Basislänge ist" 5 Beachten Sie, wie ich meine Arbeitsweise gezeigt habe. Bei Mathe geht es teilweise um Kommunikation! Der Delta-ABC soll denjenigen in der Frage darstellen. Die Länge der Seiten AC und BC sei s. Die vertikale Höhe sei h. Die Fläche sei a = 64 "Einheiten". ^ 2 Sei A -> (x, y) -> ( 1,2) Sei B -> (x, y) -> (1,7) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ Farbe (blau) ("um die Länge AB zu bestimmen") Farbe (grün) (AB "" = "" y_2-y_1 ""
Zwei Ecken eines gleichschenkligen Dreiecks liegen bei (1, 2) und (9, 7). Wenn die Fläche des Dreiecks 64 beträgt, wie lang sind die Seiten des Dreiecks?
Die Längen der drei Seiten des Deltas sind Farbe (blau) (9.434, 14.3645, 14.3645). Länge a = sqrt ((9-1) ^ 2 + (7-2) ^ 2) = sqrt 89 = 9.434 Fläche von Delta = 4:. h = (Fläche) / (a / 2) = 6 4 / (9,434 / 2) = 6 4 / 4,717 = 13,5679 Seite b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((4,717) ^ 2 + (13.5679) ^ 2) b = 14.3645 Da das Dreieck gleichschenkelig ist, ist die dritte Seite auch = b = 14.3645