Antworten:
Es ist keine Lösung möglich.
Erläuterung:
Lassen
Daher werden die ganzen Zahlen sein
und
ihre Summe wird sein
Uns wird gesagt, dass diese Summe ist
So
was impliziert
und
Aber uns wird gesagt, dass die Zahlen sind ganze Zahlen
Daher ist keine Lösung möglich.
Die Summe von vier aufeinander folgenden ungeraden Ganzzahlen ist drei Mal mehr als das 5-fache der kleinsten der Ganzzahlen. Wie lauten die Ganzzahlen?
N -> {9,11,13,15} color (blue) ("Erstellen der Gleichungen") Sei der erste ungerade Term n Sei die Summe aller Terme gleich s Dann wird der Term 1-> n der Term 2-> n +2 Term 3-> n + 4 Term 4-> n + 6 Dann s = 4n + 12 ............................ ..... (1) Da s = 3 + 5n ist .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Equating (1) bis (2) und damit das Variable s 4n + 12 = s = 3 + 5n Sammeln von Gleichungen 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Die Summe der drei aufeinander folgenden ganzen Zahlen ist 71 weniger als die kleinsten der ganzen Zahlen. Wie finden Sie die ganzen Zahlen?
Die kleinste der drei aufeinanderfolgenden ganzen Zahlen sei x. Die Summe der drei aufeinander folgenden ganzen Zahlen ist: (x) + (x + 1) + (x + 2) = 3x + 3 Es wird gesagt, dass 3x + 3 = x-71 ist rarr 2x = -74 rarr x = -37 und die drei aufeinander folgenden ganzen Zahlen sind -37, -36 und -35
Die Formel auf die Summe der N-Ganzzahlen kennen a) Wie ist die Summe der ersten N aufeinander folgenden quadratischen Ganzzahlen: Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? b) Summe der ersten N aufeinander folgenden Würfel-Ganzzahlen Sigma_ (k = 1) ^ N k ^ 3?
Für S_k (n) = sum_ {i = 0} ^ ni ^ kS_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1 / 6n (1 + n) (1 + 2n) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Wir haben sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + Summe_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 Auflösen für sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-summe_ {i = 0} ^ ni aber summe {{i = 0} ^ ni = ((n + 1) n) / 2 so summe_ {i = 0} ^ ni ^