Antworten:
Erläuterung:
Zur Findung
Also zum Finden
oder
oder
Graph {4x-3y = -24 -14.335, 5.665, -1.4, 8.6}
Die Gleichung einer Linie ist 2x + 3y - 7 = 0. Finden Sie: - (1) Steigung der Linie (2) die Gleichung einer Linie senkrecht zu der angegebenen Linie und durch den Schnittpunkt der Linie x-y + 2 = 0 und 3x + y-10 = 0?
-3x + 2y-2 = 0 Farbe (weiß) ("ddd") -> Farbe (weiß) ("ddd") y = 3 / 2x + 1 Der erste Teil enthält viele Details, die zeigen, wie die ersten Prinzipien funktionieren. Wenn Sie sich daran gewöhnt haben und Kurzwahlen verwenden, werden Sie weniger Zeilen verwenden. Farbe (blau) ("Bestimmen Sie den Schnittpunkt der Anfangsgleichungen") x-y + 2 = 0 "" ....... Gleichung (1) 3x + y-10 = 0 "" .... Gleichung ( 2) Ziehen Sie x von beiden Seiten von Gleichung (1) ab, und erhalten Sie -y + 2 = -x. Multiplizieren Sie beide Seiten mit (-1) + y-2 = + x ) Verwenden S
Die Gleichung der Linie QR lautet y = - 1/2 x + 1. Wie schreibt man eine Gleichung einer Linie senkrecht zur Linie QR in Steigungsschnittpunktform, die den Punkt (5, 6) enthält?
Sehen Sie sich unten einen Lösungsprozess an: Zuerst müssen wir die Steigung der beiden Punkte des Problems ermitteln. Die Linie QR hat die Form eines Gefälles. Die Steigungsschnittform einer linearen Gleichung lautet: y = Farbe (rot) (m) x + Farbe (blau) (b) Wobei Farbe (rot) (m) die Steigung und Farbe (blau) (b) ist y-Achsenwert. y = Farbe (rot) (- 1/2) x + Farbe (blau) (1) Daher ist die Steigung von QR: Farbe (rot) (m = -1/2). Als Nächstes nennen wir die Steigung für die Linie senkrecht zu diesem m_p Die Regel für senkrechte Flanken lautet: m_p = -1 / m Wenn wir die berechnete Steigung eins
Das PERIMETER des gleichschenkligen Trapezes ABCD beträgt 80 cm. Die Länge der Linie AB ist viermal größer als die Länge einer CD-Linie, die 2/5 der Länge der Linie BC (oder der Linien, die in der Länge gleich sind) beträgt. Was ist die Fläche des Trapezes?
Die Fläche des Trapezes beträgt 320 cm 2. Das Trapez sei wie folgt: Wenn wir die kleinere Seite CD = a und die größere Seite AB = 4a und BC = a / (2/5) = (5a) / 2 annehmen. Als solches gilt BC = AD = (5a) / 2, CD = a und AB = 4a. Daher ist der Umfang (5a) / 2xx2 + a + 4a = 10a. Aber der Umfang beträgt 80 cm. Daher ist a = 8 cm. und zwei parallele Seiten, die als a und b dargestellt sind, sind 8 cm. und 32 cm. Nun zeichnen wir die Senkrechten von C und D nach AB, die zwei identische rechtwinklige Dreiecke bilden, deren Hypotenuse 5 / 2xx8 = 20 cm beträgt. und die Basis ist (4xx8-8) / 2 = 12 und