Antworten:
Pflanze ist dies am wahrscheinlichsten eine Monokotose, Angiospermen.
Erläuterung:
Die Blütenblätter in Monokotosen sind im Allgemeinen zu dritt (trimer) oder zu einem Vielfachen von drei (z. B. 3, 6 oder 9 Blütenblättern).
Diese Pflanzen haben auch Blätter mit paralleler Belüftung.
für weitere Infos,
Zwei Winkel bilden ein lineares Paar. Das Maß für den kleineren Winkel ist das halbe Maß für den größeren Winkel. Wie groß ist das Maß für den größeren Winkel?
120 ^ @ Winkel in einem linearen Paar bilden eine gerade Linie mit einem Gesamtgradmaß von 180 ^ @. Wenn der kleinere Winkel in dem Paar das halbe Maß des größeren Winkels ist, können wir sie als solche in Beziehung setzen: Kleinerer Winkel = x ^ @ Größerer Winkel = 2x ^ @ Da die Summe der Winkel 180 ^ @ ist, können wir sagen dass x + 2x = 180. Dies vereinfacht sich zu 3x = 180, also x = 60. Daher ist der größere Winkel (2xx60) ^ @ oder 120 ^ @.
Patrick beginnt auf einer Höhe von 418 Fuß zu wandern. Er steigt auf eine Höhe von 387 Fuß ab und steigt dann auf eine Höhe, die 94 Meter höher ist als die Stelle, an der er begonnen hatte. Er stieg dann 132 Fuß ab. Was ist die Höhe von wo er aufhört zu wandern?
Nachfolgend finden Sie einen Lösungsprozess: Zunächst können Sie den 387 Fuß langen Abstieg ignorieren. Es enthält keine nützlichen Informationen zu diesem Problem. Der Aufstieg verlässt Patrick auf einer Höhe von: 418 "Fuß" + 94 "Fuß" = 512 "Fuß" Der zweite Abstieg verlässt Patrick auf einer Höhe von: 512 "Fuß" - 132 "Fuß" = 380 "Fuß"
Eine Straßenlaterne befindet sich an der Spitze einer 15 Fuß hohen Stange. Eine 6 Fuß große Frau geht von der Stange mit einer Geschwindigkeit von 4 ft / sec auf einem geraden Weg. Wie schnell bewegt sich die Spitze ihres Schattens, wenn sie 50 Fuß von der Basis der Stange entfernt ist?
D '(t_0) = 20/3 = 6, bar6 ft / s Verwenden von Thales Proportionalitätssatz für die Dreiecke AhatOB, AhatZH Die Dreiecke sind ähnlich, da sie HatO = 90 °, HatZ = 90 ° und BhatAO gemeinsam haben. Wir haben (AZ) / (AO) = (HZ) / (OB) <=> ω / (ω + x) = 6/15 15w = 6 (ω + x) <15> = 6ω + 6x <=> 9ω = 6x <=> 3ω = 2x <=> ω = (2x) / 3 Es sei OA = d, dann sei d = ω + x = x + (2x) / 3 = (5x) / 3d (t) = (5x (t)) / 3d '(t) = (5x' (t)) / 3 Für t = t_0 gilt x '(t_0) = 4 ft / s. Daher ist d' (t_0) = (5x '( t_0)) / 3 <=> d '(t_0) = 20/3 = 6, bar6 ft