Antworten:
Es wird dauern
Erläuterung:
Sie können dieses Problem lösen, indem Sie die Tatsache verwenden, dass Geschwindigkeit und Zeit eine umgekehrte Beziehung was bedeutet das, wenn eins erhöht sich, das andere sinkt, und umgekehrt.
Geschwindigkeit ist also direkt proportional zum invers der ganzen Zeit
Du kannst den … benutzen Regel von drei Um die Zeit zu finden, die erforderlich ist, um diese Entfernung bei 50 Meilen pro Stunde zurückzulegen - denken Sie daran, die Umkehrung der Zeit zu verwenden!
Jetzt multiplizieren, um zu erhalten
Alternativekönnen Sie die Tatsache verwenden, dass der Abstand als Produkt zwischen Geschwindigkeit und Zeit definiert ist
Da die Entfernung in beiden Fällen gleich ist, können Sie schreiben
Noch einmal,
Die Zeit t, die erforderlich ist, um eine bestimmte Strecke zu fahren, variiert umgekehrt mit der Geschwindigkeit r. Wenn es 2 Stunden dauert, um die Entfernung mit 45 Meilen pro Stunde zu fahren, wie lange dauert es, um dieselbe Strecke mit 30 Meilen pro Stunde zu fahren?
3 Stunden Lösung im Detail gegeben, damit Sie sehen können, woher alles kommt. Gegeben Die Zeitzählung ist t Die Geschwindigkeitszählung ist r Es sei die Variationskonstante d angegeben. Es wird angegeben, dass t umgekehrt mit r color (weiß) ("d") -> color (weiß) ("d") t = d variiert / r Multiplizieren Sie beide Seiten mit Farbe (rot) (r) Farbe (grün) (t Farbe (rot) (xxr) Farbe (weiß) ("d") = Farbe (weiß) ("d") d / Farbe (rot) ) (xxr)) Farbe (grün) (tcolor (rot) (r) = d xx Farbe (rot) (r) / r) Aber r / r ist dasselbe wie 1 tr = d x
John fuhr zwei Stunden mit einer Geschwindigkeit von 50 Meilen pro Stunde und weitere x Stunden mit einer Geschwindigkeit von 55 Meilen pro Stunde. Wenn die durchschnittliche Geschwindigkeit der gesamten Fahrt 53 Meilen pro Stunde beträgt, welche der folgenden könnte verwendet werden, um x zu finden?
X = "3 Stunden" Die Idee hier ist, dass Sie von der Definition der Durchschnittsgeschwindigkeit aus rückwärts arbeiten müssen, um zu bestimmen, wie viel Zeit John mit dem Fahren bei 55 km / h verbracht hat. Man kann sich die Durchschnittsgeschwindigkeit als das Verhältnis zwischen der gesamten zurückgelegten Entfernung und der gesamten Fahrzeit ansehen. "durchschnittliche Geschwindigkeit" = "Gesamtstrecke" / "Gesamtzeit" Gleichzeitig kann die Entfernung als Produkt zwischen Geschwindigkeit (in diesem Fall Geschwindigkeit) und Zeit ausgedrückt werden. Wen
Niles und Bob segelten zur gleichen Zeit für die gleiche Zeit, Niles 'Segelboot legte 42 Meilen mit einer Geschwindigkeit von 7 Meilen pro Stunde zurück, während Bobs Motorboot 114 Meilen mit einer Geschwindigkeit von 19 Meilen pro Stunde zurücklegte. Wie lange waren Niles und Bob unterwegs?
6 Stunden 42/7 = 6 und 114/19 = 6, so waren beide 6 Stunden unterwegs