Antworten:
Wir müssen zuerst den Ausdruck manipulieren, um ihn in eine bequemere Form zu bringen
Erläuterung:
Lass uns an dem Ausdruck arbeiten
Nehmen Sie jetzt Grenzen, wann
Wie finden Sie die Grenze von (sin (x)) / (5x), wenn x gegen 0 geht?
Die Grenze ist 1/5. Gegebenes lim_ (xto0) sinx / (5x) Wir wissen, dass die Farbe (blau) (lim_ (xto0) sinx / (x) = 1) Deshalb können wir unser gegebenes umschreiben als: lim_ (xto0) [sinx / (x) * 1 / 5] 1/5 * lim_ (xto0) [sinx / (x)] 1/5 * 1 1/5
Wie finden Sie die Grenze von (sin ^ 2 (x ^ 2)) / (x ^ 4), wenn x gegen 0 geht?
1 Sei f (x) = (sin ^ 2 (x ^ 2)) / x ^ 4 impliziert f '(x) = lim_ (x bis 0) (sin ^ 2 (x ^ 2)) / x ^ 4 impliziert f '(x) = lim_ (x bis 0) (sin (x ^ 2) * sin (x ^ 2)) / x ^ 4 = lim_ (x bis 0) {sin (x ^ 2) / x ^ 2 * sin (x ^ 2) / x ^ 2} = lim_ (x bis 0) sin (x ^ 2) / x ^ 2lim_ (x bis 0) sin (x ^ 2) / x ^ 2 * = 1 * 1 = 1
Wie finden Sie die Grenze von (sin (7 x)) / (tan (4 x)), wenn x gegen 0 geht?
7/4 Sei f (x) = sin (7x) / tan (4x) impliziert f (x) = sin (7x) / (sin (4x) / cos (4x)) impliziert f (x) = sin (7x) / sin (4x) * cos (4x) impliziert f '(x) = lim_ (x bis 0) {sin (7x) / sin (4x) * cos (4x)} impliziert f' (x) = lim_ (x bis) 0) {(7 * sin (7x) / (7x)) / (4 * sin (4x) / (4x)) * cos (4x)} impliziert f '(x) = 7 / 4lim_ (x bis 0) { (sin (7x) / (7x)) / (sin (4x) / (4x)) * cos (4x)} = 7/4 {lim_ (x bis 0) sin (7x) / (7x)) / (lim_ (x bis 0) sin (4x) / (4x)) * lim_ (x bis 0) cos (4x) = 7/4 * 1/1 * cos (4 * 0) = 7/4 * cos0 = 7/4 * 1 = 7/4