Antworten:
# r = sintheta / (2sin ^ 2theta + 3cos ^ 2theta-sin (2theta)) #
Erläuterung:
Dafür brauchen wir:
# x = rcostheta #
# y = rsintheta #
# rsintheta = 2 (rsintheta) ^ 2 + 3 (rcostheta) ^ 2-2 (rcostheta) (rsintheta) #
# rsintheta = 2r ^ 2sin ^ 2theta + 3r ^ 2cos ^ 2theta-2r ^ 2costhetasintheta #
# sintheta = 2rsin ^ 2theta + 3rcos ^ 2theta-2rcosthetasintheta #
# sintheta = 2rsin ^ 2theta + 3rcos ^ 2theta-rsin (2theta) #
# sintheta = r (2sin ^ 2theta + 3cos ^ 2theta-sin (2theta)) #
# r = sintheta / (2sin ^ 2theta + 3cos ^ 2theta-sin (2theta)) #