Antworten:
Denn es ist die Grenze zwischen der Umwelt und unserem Körper und sein Hauptzweck ist eine physische Blockade.
Erläuterung:
Die Epidermis wird als Schutzgewebe betrachtet, da sie vor allem eine physische Barriere zwischen der Außenseite und der Innenseite des Körpers bilden soll.
In der obersten Schicht (Schicht) der Epidermis sind die Zellen tot und haben somit keine physiologische Funktion, außer um eine Barrikade gegen die Außenseite zu bilden.
Dies ist nicht ganz richtig, da die Epidermis auch dazu dient, das Wasser in und aus der Zelle zu bewegen, obwohl dies auch als Barrikade angesehen werden kann.
Die Anzahl möglicher Integralwerte des Parameters k, für die die Ungleichung k ^ 2x ^ 2 <(8k -3) (x + 6) gilt, gilt für alle Werte von x, die x ^ 2 <x + 2 erfüllen.
0 x ^ 2 <x + 2 ist wahr für x in (-1,2) jetzt nach kk ^ 2 x ^ 2 - (8 k - 3) (x + 6) <0 wir haben k in ((24 +) 4 x - sqrt [24 ^ 2 + 192 x - 2 x ^ 2 - 3 x ^ 3]) / x ^ 2, (24 + 4 x + sqrt [24 ^ 2 + 192 x - 2 x ^ 2 - 3 x) ^ 3]) / x ^ 2), aber (24 + 4 x + sqrt [24 ^ 2 + 192 x - 2 x ^ 2 - 3 x ^ 3]) / x ^ 2 ist ungebunden, da sich x 0 nähert, also ist die Antwort 0 ganzzahlige Werte für k, die den beiden Bedingungen entsprechen.
Die Summe aus drei Zahlen ist 4. Wenn die erste Zahl verdoppelt und die dritte verdreifacht wird, dann ist die Summe zwei weniger als die zweite. Vier mehr als die erste, die der dritten hinzugefügt wurde, sind zwei mehr als die zweite. Finde die Zahlen?
1. = 2, 2. = 3, 3. = -1 Erstellen Sie die drei Gleichungen: Sei 1. = x, 2. = y und die 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "=> 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Beseitigen Sie die Variable y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Lösen Sie für x, indem Sie die Variable z durch Multiplizieren des EQ eliminieren. 1 + EQ. 3 von -2 und zum EQ addieren. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 3x + 4z = 2 ul (-4x - 4z = -4) -x = -2 > x = 2 Lösen Sie für z, indem Sie x in den EQ setzen. 2 & EQ. 3: EQ. 2 mit x: 4 - y +
Eine Leiter ruht in einem Winkel von 60 ° zur Horizontalen an einer Wand. Die Leiter ist 8 m lang und hat eine Masse von 35 kg. Die Wand gilt als reibungslos. Finden Sie die Kraft, die Boden und Wand gegen die Leiter ausüben?
Siehe unten