Zeigen Sie, dass (a ^ 2sin (B-C)) / (sinB + sinC) + (b ^ 2sin (C-A)) / (sinC + sinA) + (c ^ 2sin (A-B)) / (sinA + sinB) = 0?

Zeigen Sie, dass (a ^ 2sin (B-C)) / (sinB + sinC) + (b ^ 2sin (C-A)) / (sinC + sinA) + (c ^ 2sin (A-B)) / (sinA + sinB) = 0?
Anonim

1. Teil

# (a ^ 2sin (B-C)) / (sinB + sinC) #

# = (4R ^ 2sinAsin (B-C)) / (sinB + sinC) #

# = (4R ^ 2sin (pi- (B + C)) sin (B-C)) / (sinB + sinC) #

# = (4R ^ 2sin (B + C) sin (B-C)) / (sinB + sinC) #

# = (4R ^ 2 (sin ^ 2B-sin ^ 2C)) / (sinB + sinC) #

# = 4R ^ 2 (sinB-sinC) #

Ähnlich

2. Teil

# = (b ^ 2sin (C-A)) / (sinC + sinA) #

# = 4R ^ 2 (sinC-sinA) #

Dritter Teil

# = (c ^ 2sin (A-B)) / (sinA + sinB) #

# = 4R ^ 2 (sinA-sinB) #

Wir haben drei Teile hinzugefügt

Der gegebene Ausdruck #=0#