Wie finden Sie die Ableitung von Cos ^ -1 (3 / x)?

Wie finden Sie die Ableitung von Cos ^ -1 (3 / x)?
Anonim

Antworten:

# = (3 / x ^ 2) / (sqrt (1- (3 / x) ^ 2)) #

Erläuterung:

Wir müssen das wissen, # (arccos (x)) '= - (1) / (sqrt (1-x ^ 2)) #

Aber in diesem Fall haben wir eine Kettenregel, Wo wir ein Set haben #u = 3 / x = 3x ^ -1 #

# (arccos (u)) '= - (1) / (sqrt (1-u ^ 2)) * u' #

Wir müssen jetzt nur noch finden # u '#,

#u '= 3 (-1 * x ^ (- 1-1)) = - 3x ^ -2 = -3 / x ^ 2 #

Wir werden dann haben, # (arccos (3 / x)) '= - (- 3 / x ^ 2) / (sqrt (1- (3 / x) ^ 2)) = (3 / x ^ 2) / (sq (1- (3 / x) ^ 2)) #