Antworten:
Die Partikel in einer Akkretionsscheibe um ein kleines, kompaktes Objekt bewegen sich schneller und haben mehr Energie.
Erläuterung:
Wie bei jedem Körper, der sich um den Körper bewegt, bewegt sich das Objekt umso schneller, je kleiner der Orbit ist. Partikel in einer Akkretionsscheibe um einen großen Stern bewegen sich relativ langsam
Partikel in einer Akkretionsscheibe um ein kompaktes Objekt herum bewegen sich viel schneller. Infolgedessen haben Kollisionen zwischen Teilchen mehr Energie und erzeugen mehr Wärme. Gravitationseffekte vom kompakten Körper sorgen für zusätzliche Erwärmungseffekte.
Auf einer Maßstabszeichnung ist der Maßstab 1/4 Zoll = 1 Fuß. Welche Maße haben die Maßstabszeichnungen für einen Raum, der 18 Fuß mal 16 Fuß groß ist?
Nachfolgend finden Sie einen Lösungsprozess: In der Maßstabszeichnung heißt es: 1/4 "Zoll" = 1 "Fuß" Um zu ermitteln, wie viele Zoll die Raumlänge bei 18 Fuß beträgt, multiplizieren Sie jede Seite der Gleichung mit 18 18 xx 1/4 Zoll = 18 xx 1 Fuß 18/4 Zoll = 18 Fuß (16 + 2) / 4 Zoll = 18 Fuß (16/4 + 2/4) Zoll "= 18" Fuß "(4 + 1/2)" Zoll "= 18" Fuß "4 1/2" Zoll "= 18" Fuß "Um zu ermitteln, wie viele Zoll die Breite des Raumes bei 16 Fuß multipliziert, multiplizieren Sie Jede Seite
Kreis A hat einen Radius von 2 und einen Mittelpunkt von (6, 5). Kreis B hat einen Radius von 3 und einen Mittelpunkt von (2, 4). Wenn der Kreis B mit <1, 1> übersetzt wird, überlappt er den Kreis A? Wenn nicht, wie groß ist der Mindestabstand zwischen den Punkten in beiden Kreisen?
"Kreise überlappen"> "wir müssen hier den Abstand (d)" "zwischen den Zentren mit der Summe der Radien vergleichen." • "Wenn die Summe der Radien"> d "dann überlappen sich die Kreise" • ", wenn die Summe aus Radien "<d", dann keine Überlappung "" vor der Berechnung von d. Wir müssen das neue Zentrum "" von B nach der gegebenen Übersetzung "" unter der Übersetzung "<1,1> (2,4) in (2 + 1) finden. 4 + 1) bis (3,5) larrcolor (rot) "neues Zentrum von B" "um d zu bere
Stern A hat eine Parallaxe von 0,04 Bogensekunden. Stern B hat eine Parallaxe von 0,02 Bogensekunden. Welcher Stern ist weiter von der Sonne entfernt? Was ist der Abstand zu Stern A von der Sonne in Parsec? Vielen Dank?
Stern B ist weiter entfernt und die Entfernung von Sun beträgt 50 Parsecs oder 163 Lichtjahre. Die Beziehung zwischen dem Abstand eines Sterns und seinem Parallaxewinkel ist gegeben durch d = 1 / p, wobei der Abstand d in Parsec (gleich 3.26 Lichtjahren) und der Parallaxewinkel p in Bogensekunden gemessen wird. Stern A befindet sich also in einer Entfernung von 1 / 0,04 oder 25 Parsec, während Stern B in einer Entfernung von 1 / 0,02 oder 50 Parsecs liegt. Daher ist Stern B weiter entfernt und seine Entfernung von der Sonne beträgt 50 Parsecs oder 163 Lichtjahre.