Antworten:
Siehe unten.
Erläuterung:
Ob:
Verwendung dieser Definition mit gegebener Funktion:
Implizit unterscheiden:
Teilen durch
Stornierung gemeinsamer Faktoren:
Wir haben jetzt die Ableitung und können daher den Gradienten bei berechnen
Diesen Wert einstecken:
Dies ist die ungefähre Gleichung der Linie:
GRAPH:
Welches sind die Eigenschaften des Graphen der Funktion f (x) = (x + 1) ^ 2 + 2? Zutreffendes bitte ankreuzen. Die Domain besteht aus reellen Zahlen. Der Bereich ist alle reellen Zahlen größer oder gleich 1. Der y-Achsenabschnitt ist 3. Der Graph der Funktion ist 1 Einheit höher und
Erster und dritter sind wahr, zweiter ist falsch, vierter ist unvollendet. - Die Domain besteht in der Tat aus reellen Zahlen. Sie können diese Funktion als x ^ 2 + 2x + 3 umschreiben, was ein Polynom ist, und daher die Domäne mathbb {R} hat. Der Bereich ist nicht alle reelle Zahl größer oder gleich 1, da das Minimum 2 ist Tatsache. (x + 1) ^ 2 ist eine horizontale Translation (eine Einheit links) der "strandard" -Parabel x ^ 2, die den Bereich [0, infty] hat. Wenn Sie 2 hinzufügen, verschieben Sie den Graphen vertikal um zwei Einheiten, sodass der Bereich [2, infty) ist. Um den y-Achsena
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo
Skizzieren Sie den Graphen von y = 8 ^ x und geben Sie die Koordinaten aller Punkte an, an denen der Graph die Koordinatenachsen kreuzt. Beschreiben Sie vollständig die Transformation, die den Graphen Y = 8 ^ x in den Graphen y = 8 ^ (x + 1) transformiert.
Siehe unten. Exponentialfunktionen ohne vertikale Transformation kreuzen niemals die x-Achse. Daher hat y = 8 ^ x keine x-Abschnitte. Bei y (0) = 8 ^ 0 = 1 wird es einen y-Achsenabschnitt haben. Der Graph sollte wie folgt aussehen. Graph {8 ^ x [-10, 10, -5, 5]} Der Graph von y = 8 ^ (x + 1) ist der Graph von y = 8 ^ x, der um eine Einheit nach links verschoben wurde, so dass es y- Intercept liegt jetzt bei (0, 8). Sie werden auch sehen, dass y (-1) = 1. graph {8 ^ (x + 1) [-10, 10, -5, 5]} Hoffentlich hilft das!