Antworten:
57-3=54
54
6 in jeder Reihe
Erläuterung:
- Nimm die 3, die übrig sind
- teilen Sie es durch 9, um herauszufinden, wie viele Dosen in jedem Regal stehen
- Der Betrag, den Sie erhalten, wenn Sie teilen, ist die Antwort
Antworten:
6 Dosen pro Reihe
Erläuterung:
Richten Sie eine Gleichung ein, in der x die unbekannte Anzahl von Dosen pro Zeile darstellt:
Der Krämerladen hat 98 Dosen Bohnen, die auf einem Regal stehen. Er glaubt, er kann 16 Dosen in jede Reihe stellen. Wenn ja, wie viele Reihen hat er? Wie viele Dosen bleiben übrig?
98/16 = 6.125 Er kann 6 Reihen bauen. 6x16 = 96 Nur noch 2 Dosen sind übrig. 98-96 = 2.
Penny schaute in ihren Kleiderschrank. Die Anzahl der Kleider, die sie besaß, war 18 mehr als doppelt so hoch wie die Anzahl der Anzüge. Insgesamt betrug die Anzahl der Kleider und die Anzahl der Anzüge 51. Wie viele davon besaßen sie?
Penny besitzt 40 Kleider und 11 Anzüge. Lasse d und s die Anzahl der Kleider bzw. Anzüge sein. Uns wird gesagt, dass die Anzahl der Kleider 18 mehr als doppelt so hoch ist wie die Anzahl der Anzüge. Daher gilt: d = 2s + 18 (1) Es wird auch gesagt, dass die Gesamtzahl der Kleider und Anzüge 51 beträgt. Daher ist d + s = 51 (2) From (2): d = 51-s Ersetzen von d in (1) ) oben: 51-s = 2s + 18 3s = 33s = 11 Anstelle von s in (2) oben: d = 51-11 d = 40 Die Anzahl der Kleider (d) beträgt also 40 und die Anzahl der Anzüge (s ) 11 ist.
Eine Straßenlaterne befindet sich an der Spitze einer 15 Fuß hohen Stange. Eine 6 Fuß große Frau geht von der Stange mit einer Geschwindigkeit von 4 ft / sec auf einem geraden Weg. Wie schnell bewegt sich die Spitze ihres Schattens, wenn sie 50 Fuß von der Basis der Stange entfernt ist?
D '(t_0) = 20/3 = 6, bar6 ft / s Verwenden von Thales Proportionalitätssatz für die Dreiecke AhatOB, AhatZH Die Dreiecke sind ähnlich, da sie HatO = 90 °, HatZ = 90 ° und BhatAO gemeinsam haben. Wir haben (AZ) / (AO) = (HZ) / (OB) <=> ω / (ω + x) = 6/15 15w = 6 (ω + x) <15> = 6ω + 6x <=> 9ω = 6x <=> 3ω = 2x <=> ω = (2x) / 3 Es sei OA = d, dann sei d = ω + x = x + (2x) / 3 = (5x) / 3d (t) = (5x (t)) / 3d '(t) = (5x' (t)) / 3 Für t = t_0 gilt x '(t_0) = 4 ft / s. Daher ist d' (t_0) = (5x '( t_0)) / 3 <=> d '(t_0) = 20/3 = 6, bar6 ft