Wenn f (x) = sin ^ 3x und g (x) = sqrt (3x-1), was ist f '(g (x))?

Wenn f (x) = sin ^ 3x und g (x) = sqrt (3x-1), was ist f '(g (x))?
Anonim

#f (x) = sin ^ 3x #, # D_f = RR #

#g (x) = sqrt (3x-1) #, # Dg = 1/3, + oo) #

#D_ (Nebel) = {## AAx ##im##RR: ## x ##im## D_g #, #g (x) ##im##D_f} #

#x> = 1/3 #, #sqrt (3x-1) ##im## RR # #-># # x ##im## 1/3, + oo) #

# AAx ##im## 1/3, + oo) #,

  • # (Nebel) '(x) = f' (g (x)) g '(x) = f' (Quadrat (3x-1)) ((3x-1) ') / (2sqrt (3x-1)) #

#f '(x) = 3sin ^ 2x (sinx)' = 3sin ^ 2xcosx #

so # (Nebel) '(x) = sin ^ 2 (sqrt (3x-1)) cos (sqrt (3x-1)) * 9 / (2sqrt (3x-1)) #