Antworten:
Sehen Sie unten einen Lösungsprozess:
Erläuterung:
Nennen wir die erste gerade ganze Zahl in Folge:
Die zweite fortlaufende gerade ganze Zahl wäre dann:
Aus den Informationen in dem Problem können wir nun schreiben und lösen:
Daher ist die erste gerade Zahl:
Die zweite gerade Zahl in Folge ist:
Drei aufeinanderfolgende positive ganze Zahlen sind so, dass das Produkt der zweiten und dritten ganzen Zahl zwanzig mehr als das Zehnfache der ersten ganzen Zahl ist. Was sind diese Zahlen?
Die Zahlen seien x, x + 2 und x + 4. Dann gilt (x + 2) (x + 4) = 10x + 20 x ^ 2 + 2x + 4x + 8 = 10x + 20 x ^ 2 + 6x + 8 = 10x + 20 x ^ 2 - 4x - 12 = 0 (x - 6) (x + 2) = 0 x = 6 und -2 Da das Problem angibt, dass die ganze Zahl positiv sein muss, haben wir die Zahlen 6, 8 und 10. Hoffentlich hilft das!
"Lena hat 2 aufeinanderfolgende Ganzzahlen.Sie bemerkt, dass ihre Summe der Differenz zwischen ihren Quadraten entspricht. Lena wählt zwei weitere aufeinanderfolgende Ganzzahlen aus und bemerkt dasselbe. Beweisen Sie algebraisch, dass dies für zwei aufeinanderfolgende ganze Zahlen gilt.
Bitte beziehen Sie sich auf die Erklärung. Es sei daran erinnert, dass die aufeinanderfolgenden ganzen Zahlen sich um 1 unterscheiden. Wenn m eine ganze Zahl ist, muss die nachfolgende ganze Zahl also n + 1 sein. Die Summe dieser zwei ganzen Zahlen ist n + (n + 1) = 2n + 1. Der Unterschied zwischen ihren Quadraten ist (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, je nach Wunsch! Fühle die Freude an Mathe!
Romano hat drei Brüder und ihr Alter ist sogar ganze Zahlen in Folge. Was sind alle drei Zeitalter, so dass die Summe des ersten Bruders und des Vierfachen des zweiten 128 ist?
Angenommen, x ist das Alter des ersten Bruders, x + 2 ist das Alter des zweiten Bruders und x + 4 ist das Alter des dritten Bruders. x + 4 (x + 2) = 128 x + 4x + 8 = 128 5x = 120 x = 24 Der jüngste ist 24 Jahre alt, der mittlere ist 26 Jahre und der älteste ist 28 Jahre alt. Übungsübungen: Drei aufeinander folgende ungerade ganze Zahlen werden auf eine Seite geschrieben. Die Summe des Doppelten der ersten zu einer mehr als einem Drittel der größten Zahl ist 28. Finden Sie die drei Zahlen.