Antworten:
Die Antwort ist 6.
Erläuterung:
Zuerst wollen wir den GCF beider Zahlen finden. Wir wissen, da beide gerade sind, haben beide einen GCF von 2. Jetzt teilen wir beide Zahlen durch 2. 6 dividiert durch 2 ist gleich 3. 54 dividiert durch 2 ist gleich 27. Nun wollen wir noch mehr das Problem. Beide sind durch 3 teilbar, und wir kommen mit 1 bzw. 9. Nun lassen Sie uns den GCF dieser beiden Zahlen finden. Da 1 bereits vollständig abgespalten ist, müssen wir nun unsere anderen 2 GCFs multiplizieren. 2 mal 3 ist gleich 6 und 6 ist unser GCF.
Lass uns unsere Antwort überprüfen. 6 geteilt durch 6 ist gleich 1. 54 geteilt durch 6 ist gleich 9, daher ist unsere Antwort richtig.
Auf einer Maßstabszeichnung ist der Maßstab 1/4 Zoll = 1 Fuß. Welche Maße haben die Maßstabszeichnungen für einen Raum, der 18 Fuß mal 16 Fuß groß ist?
Nachfolgend finden Sie einen Lösungsprozess: In der Maßstabszeichnung heißt es: 1/4 "Zoll" = 1 "Fuß" Um zu ermitteln, wie viele Zoll die Raumlänge bei 18 Fuß beträgt, multiplizieren Sie jede Seite der Gleichung mit 18 18 xx 1/4 Zoll = 18 xx 1 Fuß 18/4 Zoll = 18 Fuß (16 + 2) / 4 Zoll = 18 Fuß (16/4 + 2/4) Zoll "= 18" Fuß "(4 + 1/2)" Zoll "= 18" Fuß "4 1/2" Zoll "= 18" Fuß "Um zu ermitteln, wie viele Zoll die Breite des Raumes bei 16 Fuß multipliziert, multiplizieren Sie Jede Seite
Der schildkrötenförmige Sandkasten fasst 6 Kubikfuß Sand. Die Größe der Schildkrötensandbox der nächsten Größe ist doppelt so groß wie die kleinere. Wie viel Sand kann der größere Sandkasten aufnehmen?
X * 2 * 6 Wenn Sie die Dimensionen der Sandbox verdoppeln, müssen Sie alle Dimensionen verdoppeln. Das bedeutet, dass jede Seite mit zwei multipliziert werden muss, um die Antwort zu finden. Wenn Sie beispielsweise ein Rechteck haben, das 4 m lang und 6 m breit ist und dann die Größe verdoppelt, müssen Sie beide Seiten verdoppeln. Also ist 4 * 2 = 8 und 6 * 2 = 12, so dass die Abmessungen des nächsten Rechtecks (unter der Annahme, dass die Größe verdoppelt wird) 8m mal 6m betragen. Die Fläche des Rechtecks ist also (4 * 2) * (6 * 2) = 8 * 12 = 96 Es gibt jedoch einen einfacheren We
Eine Straßenlaterne befindet sich an der Spitze einer 15 Fuß hohen Stange. Eine 6 Fuß große Frau geht von der Stange mit einer Geschwindigkeit von 4 ft / sec auf einem geraden Weg. Wie schnell bewegt sich die Spitze ihres Schattens, wenn sie 50 Fuß von der Basis der Stange entfernt ist?
D '(t_0) = 20/3 = 6, bar6 ft / s Verwenden von Thales Proportionalitätssatz für die Dreiecke AhatOB, AhatZH Die Dreiecke sind ähnlich, da sie HatO = 90 °, HatZ = 90 ° und BhatAO gemeinsam haben. Wir haben (AZ) / (AO) = (HZ) / (OB) <=> ω / (ω + x) = 6/15 15w = 6 (ω + x) <15> = 6ω + 6x <=> 9ω = 6x <=> 3ω = 2x <=> ω = (2x) / 3 Es sei OA = d, dann sei d = ω + x = x + (2x) / 3 = (5x) / 3d (t) = (5x (t)) / 3d '(t) = (5x' (t)) / 3 Für t = t_0 gilt x '(t_0) = 4 ft / s. Daher ist d' (t_0) = (5x '( t_0)) / 3 <=> d '(t_0) = 20/3 = 6, bar6 ft