Antworten:
Erläuterung:
Ein Beispiel ist
Da Sie zwei Nullen haben, bedeutet dies, dass es keine Gradfunktion sein kann
Der einfachste Weg, eine Funktion zu finden, ist die Anwendung der Regel
Zwei Würfel haben jeweils die Eigenschaft, dass eine 2 oder eine 4 dreimal so häufig erscheint wie eine 1, 3, 5 oder 6 bei jedem Wurf. Wie groß ist die Wahrscheinlichkeit, dass eine 7 die Summe ist, wenn die zwei Würfel gewürfelt werden?
Die Wahrscheinlichkeit, dass Sie eine 7 würfeln, beträgt 0,14. Sei x gleich der Wahrscheinlichkeit, dass du eine 1 würfst. Dies ist die gleiche Wahrscheinlichkeit wie beim Würfeln von 3, 5 oder 6. Die Wahrscheinlichkeit, eine 2 oder eine 4 zu würfeln, ist 3x. Wir wissen, dass sich diese Wahrscheinlichkeiten zu Eins addieren müssen. Die Wahrscheinlichkeit, eine 1 zu würfeln, + die Wahrscheinlichkeit, eine 2 zu würfeln, + die Wahrscheinlichkeit, eine 3 zu würfeln, + die Wahrscheinlichkeit, eine 4 zu rollen, + die Wahrscheinlichkeit, eine 5 zu rollen, + die Wahrscheinlichkeit des R
Der Vektor A hat eine Stärke von 13 Einheiten bei einer Richtung von 250 Grad und der Vektor B hat eine Größe von 27 Einheiten bei 330 Grad, beide gemessen in Bezug auf die positive x-Achse. Was ist die Summe aus A und B?
Wandeln Sie die Vektoren in Einheitsvektoren um und fügen Sie ... Vektor A = 13 [cos250i + sin250j] = - 4.446i-12.216j Vektor B = 27 [cos330i + sin330j] = 23.383i-13.500j Vektor A + B = 18.936i -25,716j Betrag A + B = Quadrat (18,936 ^ 2 + (- 25,716) ^ 2) = 31,936 Der Vektor A + B ist im Quadranten IV. Finden Sie den Referenzwinkel ... Referenzwinkel = tan ^ -1 (25.716 / 18.936) = 53.6 ^ o Richtung von A + B = 360 ^ o-53.6 ^ o = 306.4 ^ o Das hat geholfen
Sei f eine Funktion damit (unten). Welches muss wahr sein? I. f ist kontinuierlich bei x = 2 II. f ist bei x = 2 III unterscheidbar. Die Ableitung von f ist kontinuierlich bei x = 2 (A) I (B) II (C) I und II (D) I & III (E) II & III
(C) Zu beachten, dass eine Funktion f an einem Punkt x_0 differenzierbar ist, wenn lim_ (h-> 0) (f (x_ + h) -f (x_0)) / h = L die gegebene Information effektiv ist, dass f bei 2 differenzierbar ist und das ist f '(2) = 5. Betrachten wir nun die Aussagen: I: True Unterscheidbarkeit einer Funktion an einem Punkt impliziert ihre Kontinuität an diesem Punkt. II: wahr Die angegebenen Informationen entsprechen der Definition der Unterscheidbarkeit bei x = 2. III: Falsch Die Ableitung einer Funktion ist nicht notwendigerweise stetig, ein klassisches Beispiel ist g (x) = {(x ^ 2sin (1 / x), wenn x! = 0), (0 wenn x = 0)