Lim_ (x -> 0) (sqrt (1 + x ^ 2) - sqrt (1 + x)) / (sqrt (1 + x ^ 3) - sqrt (1 + x)) =?

Lim_ (x -> 0) (sqrt (1 + x ^ 2) - sqrt (1 + x)) / (sqrt (1 + x ^ 3) - sqrt (1 + x)) =?
Anonim

Antworten:

#lim_ (x -> 0) (Quadrat (1 + x ^ 2) -sqrt (1 + x)) / (Quadrat (1 + x ^ 3) -sqrt (1 + x)) = 1 #

Erläuterung:

Mit der Regel von L'Hopital wissen wir das #lim_ (x -> a) (f (x)) / (g (x)) => (f '(a)) / (g' (a)) #

#f (x) = sqrt (1 + x ^ 2) -sqrt (1 + x) #

# = (1 + x ^ 2) ^ (1/2) - (1 + x) ^ (1/2) #

#f '(x) = x (1 + x ^ 2) ^ (- 1/2) - (1 + x) ^ (- 1/2) / 2 #

#g (x) = sqrt (1 + x ^ 3) -sqrt (1 + x) #

# = (1 + x ^ 3) ^ (1/2) - (1 + x) ^ (1/2) #

#g '(x) = (3x ^ 2 (1 + x ^ 3) ^ (- 1/2)) / 2- (1 + x) ^ (- 1/2) / 2 #

#lim_ (x -> 0) (sqrt (1 + x ^ 2) -sqrt (1 + x)) / (sqrt (1 + x ^ 3) -sqrt (1 + x)) => (0 (1+) 0 ^ 2) ^ (- 1/2) - (1 + 0) ^ (- 1/2) / 2) / ((3 (0) ^ 2 (1 + 0 ^ 3) ^ - 1/2)) / 2- (1 + 0) ^ (- 1/2) / 2) #

#=(-(1+0)^(-1/2)/2)/(-(1+0)^(-1/2)/2)#

# = Abbruch (- (1 + 0) ^ (- 1/2) / 2) / Abbruch (- (1 + 0) ^ (- 1/2) / 2) = 1 #