Was ist der Gegenbegriff von 1 / sinx?

Was ist der Gegenbegriff von 1 / sinx?
Anonim

Antworten:

Es ist # -ln abs (cscx + cot x) #

Erläuterung:

# 1 / sinx = cscx = cscx (cscx + cotx) / (cscx + cotx) #

# = (csc ^ 2 x + csc x Bettchen x) / (cscx + cotx) #

Der Zähler ist das Gegenteil (das 'Negativ') der Ableitung des Denomoinators.

Der Gegenbegriff ist also minus dem natürlichen Logarithmus des Nenners.

# -ln abs (cscx + cot x) #.

(Wenn Sie die Technik der Substitution gelernt haben, können wir verwenden #u = cscx + Kinderbett x #, so #du = -csc ^ 2 x - cscx cotx #. Der Ausdruck wird # -1 / u du #.)

Sie können diese Antwort durch Differenzierung überprüfen.

Ein anderer Ansatz dazu

# int1 / sinxdx # #=#

# intsinx / sin ^ 2xdx #

# intsinx / (1-cos ^ 2x) dx #

Ersatz

# cosx = u #

# -sinxdx = du #

# sinxdx = -du #

#=# # -int1 / (1-u ^ 2) du #

  • # 1 / (1-u ^ 2) = 1 / ((u-1) (u + 1)) = A / (u-1) + B / (u + 1) # #=#

# (A (u + 1) + B (u-1)) / ((u-1) (u + 1)) #

Wir brauchen #A (u + 1) + B (u-1) = 1 # #<=>#

# Au + A + Bu-B = 1 # #<=>#

# (A + B) u + A-B = 1 # #<=>#

# (A + B) u + A-B = 0u + 1 # #<=>#

# {(A + B = 0 ""), (A-B = 1 ""):} # #<=>#

# {(A + B = 0 ""), (A = B + 1 ""):} # #<=>#

# {(B + 1 + B = 0 ""), (A = B + 1 ""):} # #<=>#

# {(B = -1 / 2 ""), (A = 1/2 ""):} #

Deshalb, # -int1 / (1-u ^ 2) du # #=#

# -int ((1/2) / (u-1) - (1/2) / (u + 1)) du # #=#

# 1 / 2int (1 / (u + 1) -1 / (u-1)) du # #=#

# 1 / 2int (((u + 1) ') / (u + 1) - ((u-1)') / (u-1)) du # #=#

# 1/2 (ln | u + 1 | -ln | u-1 | + c) # #=#

# 1/2 (ln | (u + 1) / (u-1) | + c) # #=#

# 1/2 (ln | (cosx + 1) / (cosx-1) | + c) # #=#

# 1/2 (ln | (1-cosx) / (1 + cosx) | + c) #

#ln | tan (x / 2) | + c '#, # (c, c ') ##im## RR #