
Antworten:
Diese Aussage gilt für alle außer zwei der Primzahlen, Nenner von
Erläuterung:
Um eine abschließende Dezimalzahl zu bilden, muss der Nenner eines Bruchs eine Potenz von sein
Die Primzahlen sind
Nur
Die anderen Primzahlen geben alle wiederkehrende Dezimalzahlen an:
Summe von Zähler und Nenner eines Bruchs ist 3 weniger als das Doppelte des Nenners. Wenn der Zähler und der Nenner beide um 1 abnehmen, wird der Zähler zum halben Nenner. Bruch ermitteln?

4/7 Nehmen wir an, der Bruch ist a / b, Zähler a, Nenner b. Summe von Zähler und Nenner eines Bruchs ist 3 weniger als das Doppelte des Nenners a + b = 2b-3 Wenn sowohl der Zähler als auch der Nenner um 1 sinken, wird der Zähler zum halben Nenner. a-1 = 1/2 (b-1) Jetzt machen wir die Algebra. Wir beginnen mit der Gleichung, die wir gerade geschrieben haben. 2 a-2 = b-1 b = 2a-1 Aus der ersten Gleichung ist a + b = 2b-3 a = b-3 Wir können b = 2a-1 in diese einsetzen. a = 2a - 1 - 3 - a = -4 a = 4 b = 2a - 1 = 2 (4) -1 = 7 Fraktion ist a / b = 4/7 Prüfen: * Summe des Zählers (4) und der Nen
Der Zähler eines Bruchs (der eine positive ganze Zahl ist) ist 1 kleiner als der Nenner. Die Summe aus dem Bruch und dem Zweifachen seines Gegenstücks ist 41/12. Was ist der Zähler und der Nenner? Ps

3 und 4 Wenn wir n für den ganzzahligen Zähler schreiben, erhalten wir: n / (n + 1) + (2 (n + 1)) / n = 41/12 Wenn wir Brüche hinzufügen, geben wir ihnen zunächst einen gemeinsamen Nenner. In diesem Fall erwarten wir natürlich, dass der Nenner 12 ist. Daher erwarten wir, dass sowohl n als auch n + 1 Faktoren von 12 sind. Versuchen Sie n = 3 ... 3/4 + 8/3 = (9 + 32) / 12 = 41/12 "" nach Bedarf.
Die Summe aus Zähler und Nenner eines Bruchs ist 12. Wenn der Nenner um 3 erhöht wird, beträgt der Bruch 1/2. Was ist der Bruch?

Ich habe 5/7. Lassen Sie uns unseren Bruch x / y nennen, wir wissen: x + y = 12 und x / (y + 3) = 1/2 aus der Sekunde: x = 1/2 (y + 3) in die zuerst: 1/2 (y + 3) + y = 12 y + 3 + 2y = 24 3y = 21 y = 21/3 = 7 und so: x = 12-7 = 5